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AbstractThe model of bulk-synchronous parallel (BSP) computation is an emerg-ing paradigm of general-purpose parallel computing. This thesis presents asystematic approach to the design and analysis of BSP algorithms. We in-troduce an extension of the BSP model, called BSPRAM, which reconcilesshared-memory style programming with e�cient exploitation of data local-ity. The BSPRAM model can be optimally simulated by a BSP computerfor a broad range of algorithms possessing certain characteristic proper-ties: obliviousness, slackness, granularity. We use BSPRAM to design BSPalgorithms for problems from three large, partially overlapping domains:combinatorial computation, dense matrix computation, graph computation.Some of the presented algorithms are adapted from known BSP algorithms(buttery dag computation, cube dag computation, matrix multiplication).Other algorithms are obtained by application of established non-BSP tech-niques (sorting, randomised list contraction, Gaussian elimination withoutpivoting and with column pivoting, algebraic path computation), or use orig-inal techniques speci�c to the BSP model (deterministic list contraction,Gaussian elimination with nested block pivoting, communication-e�cientmultiplication of Boolean matrices, synchronisation-e�cient shortest pathscomputation). The asymptotic BSP cost of each algorithm is established,along with its BSPRAM characteristics. We conclude by outlining somedirections for future research.
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Chapter 1IntroductionThe model of bulk-synchronous parallel (BSP) computation (see [Val90a,McC93, McC95, McC96c, McC98]) provides a simple and practical frame-work for general-purpose parallel computing. Its main goal is to supportthe creation of architecture-independent and scalable parallel software. Thekey features of BSP are the treatment of the communication medium as anabstract fully connected network, and explicit and independent cost analysisof communication and synchronisation.Many other models have been proposed for parallel computing. One ofthe main divisions among the models is by the type of memory organisa-tion: distributed or shared. Models based on shared memory are appealingfrom the theoretical point of view, because they provide the bene�ts of nat-ural problem speci�cation, convenient design and analysis of algorithms,and straightforward programming. For this reason, the PRAM model hasdominated the theory of parallel computing. However, this model is farfrom being realistic, since the cost of supporting shared memory in hard-ware is much higher than that of distributed memory. Consequently, muche�ort was put into the development of e�cient methods for simulation ofthe PRAM on more realistic models.In contrast with the PRAMmodel, the BSP model accurately reects themain design features of most existing parallel computers. On an abstractlevel, BSP is de�ned as a distributed memory model with point-to-pointcommunication between the processors. Paper [Val90b] shows how shared-memory style programming, with all the associated bene�ts, can be providedin BSP by PRAM simulation. However, this approach does not allow thealgorithm designer to exploit data locality, and therefore in many cases maylead to ine�cient algorithms. In this thesis we propose a new model, calledBSPRAM, which stands between BSP and PRAM. The BSPRAM modelis based on a mixture of shared and distributed memory, and allows one tospecify, design, analyse and program shared-memory style algorithms thatexploit data locality. The cost models of BSPRAM and BSP are based4
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5on the same principles, but there are important di�erences connected withconcurrent memory access in the BSPRAM model. The two models arerelated by e�cient simulations for a broad range of algorithms.We identify some properties of a BSPRAM algorithm that su�ce forits optimal simulation in BSP. Algorithms possessing at least one of theseproperties | obliviousness, high slackness, high granularity | are abundantin scienti�c and technical computing. In the subsequent chapters we demon-strate the meaning and use of such properties by systematically designingalgorithms for problems from three large, partially overlapping domains:combinatorial computation, dense matrix computation, graph computation.In view of our simulation results, BSPRAM here plays the role of a method-ology for generic BSP algorithm design.The algorithms presented in this thesis, as well as many other BSP algo-rithms, are de�ned for input sizes that are su�ciently large with respect tothe number of processors. Apart from simplifying the BSPRAM algorithms,this condition provides the slackness and granularity necessary for their ef-�cient BSP simulation. A typical form of such a condition is n � poly(p),where n is the size of the input, p is the number of processors, and poly is alow-degree polynomial. Practical problems usually satisfy such conditions.Because of that, we present the algorithms in their simplest form, withouttrying to adapt them for lower values of n. Instead, we only note wheresuch optimisation is possible, and give references to papers that address thisproblem.For the sake of simplicity, throughout the thesis we ignore small irregular-ities that arise from imperfect matching of integer parameters. For example,when we write \divide an array of size n into p regular blocks", value n maynot be an exact multiple of p, and therefore the blocks may di�er in size by�1. Sometimes we use square bracket notation for matrices, referring to anelement of an n � n matrix A as A[i; j], 1 � i; j � n. When the matrix ispartitioned into regular blocks of size m � m, we refer to each individualblock as A[[s; t]], 1 � s; t � n=m.
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Chapter 2Bulk-synchronous parallelcomputation2.1 Historical backgroundThe last �fty years have seen the tremendous success of sequential comput-ing. As pointed out in [Val90a, McC93, McC96c], this was primarily dueto the existence of a single model, the von Neumann computer, which wassimple and realistic enough to serve as a universal basis for sequential com-puting. No such basis existed for parallel computing. Instead, there was abroad variety of hardware designs and programming models.One of the main traditional divisions among models of parallel program-ming is the organisation of memory: distributed versus shared. Sharedmemory is much costlier to support in hardware than distributed memory.However, shared memory has some important advantages:� natural problem speci�cation | computational problems have well-de�ned input and output, that are assumed to reside in the sharedmemory. In contrast, algorithms for a distributed memory model haveto assume a particular distribution of input and output. This dis-tribution e�ectively forms a part of the problem speci�cation, thusrestricting the practical applicability of an algorithm.� convenient design and analysis of algorithms | the computation canbe described at the top level as a sequence of transformations to theglobal state determined by the contents of the shared memory. Incontrast, algorithms for distributed memory models have to be de-signed directly in terms of individual processors operating on theirlocal memories.� straightforward programming | the shared memory is uniformly ac-cessible via a single address space using two basic primitives: reading6
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2.1. HISTORICAL BACKGROUND 7and writing. In contrast, programming for distributed memory modelsis more complicated, typically involving point-to-point communicationbetween processors via the network.The computational model most widely used in the theory of paral-lel computing is the Parallel Random Access Machine (PRAM) (see e.g.[CLR90, KR90, J�aJ92, McC93]). The PRAM consists of a potentially in�-nite number of processors, each connected to a common memory unit withpotentially in�nite capacity. The computation is completely synchronous.Accessing a single value in the memory costs the same as performing anarithmetic or Boolean operation on a single value.Several variants of the PRAM model have been introduced. Amongthem are the exclusive read, exclusive write PRAM (EREW PRAM), whichrequires that every memory cell is accessed by not more than one processorin any one step, and the concurrent read, concurrent write PRAM (CRCWPRAM), which allows several processors to access a cell concurrently in onestep. For the CRCW PRAM, a rule to resolve concurrent writing must beadopted. One of the possibilities, realised in the combining CRCW PRAM(see e.g. [CLR90, pages 690{691]), is to write some speci�ed combination ofthe values being written and (optionally) the value stored previously at thetarget cell. A typical choice of the combining function is some commutativeand associative operator such as the sum or the maximum of the values.Another major model of parallel computation is the circuit model (seee.g. [KR90, McC93]). A circuit is a directed acyclic graph (dag) with labelednodes. We call a node terminal, if it is either a source (node of indegree 0),or a sink (node of outdegree 0). In a circuit, source nodes are labeled asinput, sink nodes are labeled as output, and nonterminal nodes are labeledby arithmetic or Boolean operations. Algorithms that can be represented bycircuits are oblivious, i.e. perform the same sequence of operations for anyinput (although the arguments and results of individual operations may, ofcourse, depend on the inputs). Such algorithms are simpler to analyse thannon-oblivious ones. Circuits also provide a useful intermediate stage in thedesign of algorithms for PRAM-type models: the problem of designing acircuit is separated from the problem of scheduling its underlying dag. Forexample, while the question of an optimal solution to the matrix multipli-cation problem remains open, one can �nd optimal scheduling for particularcircuits representing e.g. the standard �(n3) method, or Strassen's �(nlog 7)method. In this thesis we study the scheduling problem for several classesof dags.Both the PRAM and the circuit model are simple and straightforward.However, these models do not take into account the limited computationalresources of existing computers, and therefore are far from being realistic.The �rst step in making them more realistic was to introduce a new complex-ity measure, e�ciency, depending on the number of processors used by the
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8 CHAPTER 2. BSP COMPUTATIONalgorithm (see [KRS90]). New parallel models were gradually introducedto account for resources other than the number of processors. Currently,dozens of such models exists; see [LMR96, MMT95, ST98] for a survey.Among the computer resources measured by these models are, according to[LMR96], the number of processors, memory organisation (distributed orshared), communication latency, degree of asynchrony, bandwidth, messagehandling overhead, block transfer, memory hierarchy, memory contention,network topology, and many others.Models that include many di�erent resource metrics tend to be too com-plex. A useful model should be concise and concentrate on a small numberof crucial resources. One of the simplest and most elegant parallel models isthe BSP model | see [Val90a, McC95, McC96c, McC98] for the descriptionof BSP as an emerging paradigm for general-purpose parallel computing.The BSP model is de�ned by a few qualitative characteristics: uniformnetwork topology, barrier-style bulk synchronisation, and by three quantita-tive parameters: the number of processors, communication throughput, andlatency. The main principle of BSP is to regard communication and syn-chronisation as separate activities, possibly performed by di�erent mecha-nisms. The corresponding costs are independent and compositional, i.e. canbe simply added together to obtain the total cost. It is easy to extend theBSP model to account for memory e�ciency as well. Such an extensionis considered in [MT], where memory-e�cient BSP algorithms for matrixmultiplication are analysed.In this thesis we propose a variant of BSP, called BSPRAM, intended tosupport shared-memory style BSP programming. The memory of BSPRAMhas two levels: local memory of individual processors, and a shared globalmemory. We compare BSPRAM with similar existing models. We thenstudy the relationship between BSPRAM and BSP by means of simulation.Let n denote the size of the input to a program. Following [Val90b], we saythat a model A can optimally simulate a model B if there is a compilationalgorithm that transforms any program with cost T (n) on B to a programwith cost O(T (n)) on A. If the compilation algorithm yields a randomisedprogram for A, we call the simulation optimal if the expected cost of the ran-domised program is O(T (n)). Sometimes the simulation may be restrictedto programs from a particular class. We assume that we are free to de�nea suitable distribution of the input and output data to simulate a sharedmemory model on a distributed memory one.If the described compilation is de�ned only for a particular class of algo-rithms, we say that A can optimally simulate B for that class of algorithms.We show that BSP can optimally simulate BSPRAM for several large classesof algorithms.
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2.2. THE BSP MODEL 9
BSP(p; g; l) PM1 PM2 b b b PMpNETWORK(g; l)Figure 2.1: A BSP computer
12p
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comp comp compcomm commFigure 2.2: A BSP computation2.2 The BSP modelA BSP computer, introduced in [Val89, Val90b, Val90a], consists of p pro-cessors connected by a communication network (see Figure 2.1). Each pro-cessor has a fast local memory. The processors may follow di�erent threadsof computation. A BSP computation is a sequence of supersteps (see Fig-ure 2.2). A superstep consists of an input phase, a local computation phaseand an output phase. In the input phase, a processor receives data that weresent to it in the previous superstep; in the output phase, it can send datato other processors, to be received in the next superstep. The processorsare synchronised between supersteps. The computation within a superstepis asynchronous.Let cost unit be the cost of performing a basic arithmetic operation or alocal memory access. If, for a particular superstep, w is the maximum num-ber of local operations performed by each processor, h0 (respectively, h00)is the maximum number of data units received (respectively, sent) by eachprocessor, and h = h0 + h00 (another possible de�nition is h = max(h0; h00)),then the cost of the superstep is de�ned as w + h � g + l. Here g and l arethe BSP parameters of the computer. The value g is the communicationthroughput ratio (also called \bandwidth ine�ciency" or \gap"), the valuel is the communication latency (also called \synchronisation periodicity").
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10 CHAPTER 2. BSP COMPUTATIONWe write BSP(p; g; l) to denote a BSP computer with the given values of p,g and l. If a computation consists of S supersteps with costs ws+ hs � g+ l,1 � s � S, then its total cost is W + H � g + S � l, where W = PSs=1wsis the local computation cost, H =PSs=1 hs is the communication cost, andS is the synchronisation cost. The values of W , H and S typically dependon the number of processors p and on the problem size. We de�ne the lo-cal computation volume W as the total number of local operations, and thecommunication volume H as the total number of data units transferred be-tween the processors. We call a BSP computation balanced, ifW = O(W=p)and H = O(H=p).In order to utilise the computer resources e�ciently, a typical BSP pro-gram regards the values p, g and l as con�guration parameters. Algorithmdesign should aim to minimise local computation, communication and syn-chronisation costs for any realistic values of these parameters. For mostproblems, a balanced distribution of data and computation work will leadto algorithms that achieve optimal cost values simultaneously. However, forsome other problems a need to trade o� the costs will arise.An example of a communication-synchronisation tradeo� is the prob-lem of broadcasting a single value from a processor. It can be performedwith H = S = O(log p) by a balanced binary tree, or with H = O(p) andS = O(1) by sending the value directly to every processor (this was ob-served in [Val90a]). On the other hand, a technique known as two-phasebroadcast allows one to achieve perfect balance for the problem of broad-casting n � p values from one processor. By dividing the values into p blocksof size n=p, scattering the blocks so that each one gets to a distinct proces-sor, and then performing total exchange of the blocks, the problem can besolved with H = O(n) and S = O(1) | both cost values are obviously op-timal. Communication-optimal broadcasting of n values, 1 < n < p, can beperformed in 1 + log p= log n phases. The values are scattered so that eachone gets to a distinct processor, then each value is broadcast by a balancedtree of degree n and height log p= log n. The communication and synchro-nisation costs of such simultaneous broadcast are H = O(n � log p= log n),S = O(log p= log n). For n = p�, where � is a constant, 0 < � < 1, bothcost values are trivially optimal. For any asymptotically smaller n, there isa communication-synchronisation tradeo�.Matrix computations provide further examples of problems with andwithout tradeo�s: for instance, matrix multiplication can be done opti-mally in communication and synchronisation, but matrix inversion presentsa tradeo� between communication and synchronisation.The BSP model does not directly support shared memory, broadcastingor combining. These facilities can be obtained by simulating a PRAM on aBSP computer. Such simulation is also called the automatic mode of BSPprogramming, as opposed to the direct mode, i.e. programming with explicit
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2.2. THE BSP MODEL 11control over memory management.In order to achieve e�cient simulation of a PRAM on a BSP computer,the PRAM must have more processors than the BSP computer. For a BSPcomputer with a �xed value of p, we say that a PRAM algorithm has slack-ness �, if at least �p PRAM processors perform reading or writing at ev-ery step. Slackness measures the \degree of communication parallelism"achieved by the algorithm, and is typically a function of the problem size nand the number of BSP processors p.In the automatic mode, each step of a PRAM is implemented as a su-perstep, with at least � virtual PRAM processors allocated to each of thep BSP processors. Virtual processor allocation is equal and non-repeating,but otherwise arbitrary. Paper [Val90b] provides the following result.Theorem 1. Let g = O(1), l = O(�). An optimal randomised simulationon BSP(p; g; l) can be achieved for(i) any EREW PRAM algorithm with slackness � � log p;(ii) any CRCW PRAM algorithm with slackness � � p� for a constant� > 0.Proof. See [Val90b]. �Memory access in the randomised simulation is made uniform by hash-ing : each memory cell of the simulated PRAM is represented by a cell in thelocal memory of one of the BSP processors, chosen according to some easilycomputable hash function which ensures nearly random and independentdistribution of cells.The simulation allows one to write PRAM programs for BSP computersand to predict their performance accurately. Most practical problems pos-sess the slackness necessary for e�cient simulation. However, the automaticmode does not allow the programmer to exploit data locality, because PRAMprocessors do not have any local memory. This lack of data locality maybe insigni�cant for highly irregular problems (e.g. multiplication of sparsematrices with a random pattern of nonzeros). On the other hand, data lo-cality should be preserved when dealing with more structured problems (e.g.multiplication of dense matrices, or sparse matrices with a regular nonzeropattern). E�cient BSP solution of such problems cannot be achieved viathe automatic mode.The next section aims to reconcile the exploitation of data locality withshared-memory style programming, retaining the parameters g and l andthe bulk-synchronous structure of the computation. We introduce a newBSP-type model, called BSPRAM, in which the network is implementedas a random-access shared memory unit. The new model is designed tocombine the best features of both automatic and direct BSP programmingmodes. We present a randomised BSP simulation of BSPRAM, based on
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12 CHAPTER 2. BSP COMPUTATION
BSPRAM(p; g; l) PM1 PM2 b b b PMpMAIN MEMORY(g; l)Figure 2.3: A BSPRAMa suitably adapted concept of slackness. We also describe a deterministicsimulation, based on additional properties of obliviousness and granularity.2.3 The BSPRAM modelIn the previous section we described two alternative approaches to BSPprogramming. The automatic mode (PRAM simulation) enables the shared-memory style BSP programming with all its bene�ts. However, it does notallow one to exploit data locality. On the other hand, the direct mode (pureBSP) allows one to exploit data locality, but only in a distributed memoryparadigm. The aim of this section is to introduce a new BSP programmingmethod, allowing both shared-memory style programming and exploitationof data locality. This might be called a \semi-automatic mode" of BSPprogramming.The new method is similar to the PRAM simulation method mentionedin the previous section. The key di�erence is that a BSP superstep is nolonger fragmented into independent steps of �p individual virtual PRAMprocessors. The structure of computation in the local memories of BSP pro-cessors is preserved. The simulation mechanism is used to model the globalshared memory, which in the new model replaces the BSP communicationnetwork. We call the new computational model BSPRAM.Formally, a BSPRAM consists of p processors with fast local memories(see Figure 2.3). In addition, there is a single shared main memory. As inBSP, the computation proceeds by supersteps (see Figure 2.4). A superstepconsists of an input phase, a local computation phase, and an output phase.In the input phase a processor can read data from the main memory; in theoutput phase it can write data to the main memory. The processors aresynchronised between supersteps. The computation within a superstep isasynchronous.As with the PRAM, concurrent access to the main memory in one su-perstep can be either allowed or disallowed. In this thesis we consider anexclusive-read, exclusive-write BSPRAM (EREW BSPRAM), in which ev-ery cell of the main memory can be read from and written to only once inevery superstep, and a concurrent-read, concurrent-write BSPRAM (CRCWBSPRAM), that has no restrictions on concurrent access to the main mem-
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2.3. THE BSPRAM MODEL 13
12p

superstepz }| { superstepz }| { superstepz }| {
comp comp compout outin inFigure 2.4: A BSPRAM computationory. For convenience of algorithm design, we assume that if a value x isbeing written to a main memory cell containing the value y, the resultmay be determined by any prescribed function f(x; y) computable in timeO(1). Similarly, if values x1; : : : ; xm are being written concurrently to amain memory cell containing the value y, the result may be determined byany prescribed function f(x1 � � � � � xm; y), where � is a commutative andassociative operator, and both f and � are computable in time O(1). Thiscorresponds to resolving concurrent writing in PRAM by combining (see e.g.[CLR90]).In a similar way to the BSP model, the cost of a BSPRAM superstep isde�ned as w+ h � g+ l. Here w is the maximum number of local operationsperformed by each processor, and h = h0+h00. The value of h0 (respectively,h00) is de�ned as the maximum number of data units read from (respectively,written to) the main memory by each processor in the superstep. As inBSP, the values g and l are �xed parameters of the computer. We writeBSPRAM(p; g; l) to denote a BSPRAM with the given values of p, g andl. The cost of a computation consisting of several supersteps is de�ned asW +H � g+ S � l, where W , H and S have the same meaning as in the BSPmodel.One of the early models similar to BSPRAM was the LPRAMmodel pro-posed in [ACS90]. The model consists of a number of synchronously workingprocessors with large local memories and a global shared memory. The onlymode of concurrent memory access considered in [ACS90] is CREW. Themodel has an explicit bandwidth parameter, corresponding to g in BSP andBSPRAM. There is no accounting for synchronisation cost, although it issuggested as a possible extension of the model. Thus, a p-processor LPRAMis equivalent (up to a constant factor) to CREW BSPRAM(p; g; 1).Another model similar to BSPRAM, called the Asynchronous PRAM,was proposed in [Gib93] (an earlier version of this model was called the Phase
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14 CHAPTER 2. BSP COMPUTATIONPRAM). Like BSPRAM, the Asynchronous PRAM consists of processor-memory pairs communicating via a global shared memory. The computa-tion structure is bulk-synchronous, with EREW communication. The modelcharges unit cost for a global read/write operation, d units for communica-tion startup and B units for barrier synchronisation. Thus, a p-processorAsynchronous PRAM is equivalent (up to a constant factor) to EREWBSPRAM(p; 1; d +B).A bulk-synchronous parallel model QSM is proposed in [GMR99, GMR,Ram99] (an earlier version of this model was called QRQW PRAM). Themodel has a bandwidth parameter g. A p-processor QSM machine is similarto BSPRAM(p; g; 1) with a special mode of concurrent access to the mainmemory: any k concurrent accesses to a cell cost k units. Such a model ismore powerful than EREWBSPRAM(p; g; 1), but less powerful than CRCWBSPRAM(p; g; 1).An interesting partial alternative to shared memory bulk-synchronousparallel models is o�ered by array languages with implicit parallelism. Anexample of such a language is ZPL (see [Sny98]), based on the CTA/PhaseAbstractions model described in [AGL+98]. The developers of ZPL haveannounced their plans for an extension, called Advanced ZPL, which is likelyto be similar to the BSPRAM model.Just as for PRAM simulation, some \extra parallelism" is necessary fore�cient BSPRAM simulation on BSP. We say that a BSP or BSPRAMalgorithm has slackness �, if the communication cost of every one of its su-persteps is at least �. We adapt the results on PRAM simulation mentionedin the previous section to obtain an e�cient simulation of BSPRAM.Theorem 2. An optimal randomised simulation on BSP(p; g; l) can be achievedfor(i) any EREW BSPRAM(p; g; l) algorithm with slackness � � log p;(ii) any CRCW BSPRAM(p; g; l) algorithm with slackness � � p� for aconstant � > 0.Proof. Immediately follows from Theorem 1. �In contrast with Theorem 1, no conditions on g and l are necessary, sincethe simulated and the simulating machines have the same BSP parameters.Apart from randomised simulation by hashing, in some cases an e�cientdeterministic simulation of BSPRAM is possible. We consider two importantclasses of algorithms for which such deterministic simulation exists.We say that a BSPRAM algorithm is oblivious if the sequence of oper-ations executed by each processor is the same for any input of a given size(although the arguments and results of individual operations may depend onthe inputs). An oblivious algorithm can be represented as a computation of auniform family of circuits (for the de�nition of a uniform family of circuits,
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2.3. THE BSPRAM MODEL 15see e.g. [KR90]). We say that a BSPRAM algorithm is communication-oblivious, if the sequence of communication and synchronisation operationsexecuted by a processor is the same for any input of a given size (no suchrestriction is made for local computation).We say that a set of cells in the main memory of BSPRAM constitutes agranule, if in any input (output) phase each processor either does not readfrom (write to) any of these cells, or reads from (writes to) all of them.Informally, a granule is treated as \one whole piece of data". We say that aBSPRAM algorithm has granularity  if all main memory cells used by thealgorithm can be partitioned into granules of size at least . The slacknessof a BSPRAM algorithm will always be at least as large as its granularity:� � .Communication-oblivious BSPRAM algorithms, and BSPRAM algorithmswith su�cient granularity, allow optimal deterministic BSP simulation. Ran-domised hashing is not necessary for communication-oblivious algorithms,since their communication pattern is known in advance. Therefore, an opti-mal distribution of main memory cells across BSP processor-memory pairscan be found o�-line. For algorithms with granularity at least p, hashing isnot necessary either, since every granule can be split up into p equal partsthat are evenly distributed across BSP processor-memory pairs. This makesall communication uniform. In both cases randomised hashing is replacedby a simple deterministic data distribution. Moreover, for communication-oblivious algorithms with slackness at least p�, and for algorithms with gran-ularity at least p, concurrent memory access can be simulated by mechanismssimilar to the two-phase and (1+ ��1)-phase broadcast described in the pre-vious section.Below we formally state the results on deterministic BSPRAM simula-tion, published previously in [Tis96, Tis98].Theorem 3. An optimal deterministic simulation on BSP(p; g; l) can beachieved for(i) any communication-oblivious EREW BSPRAM(p; g; l) algorithm;(ii) any communication-oblivious CRCW BSPRAM(p; g; l) algorithm withslackness � � p� for a constant � > 0;(iii) any CRCW BSPRAM(p; g; l) algorithm with granularity  � p.Proof. (i) Since the communication pattern of a communication-obliviousalgorithm is known in advance, we only need to show that any computationof EREW BSPRAM (i.e. a particular run of an algorithm) can be performedin BSP at the same asymptotic cost. First, we modify each BSPRAM su-perstep so that each processor both reads and writes any main memory cellthat it either reads or writes in the original superstep. This increases the
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16 CHAPTER 2. BSP COMPUTATIONcommunication cost of the computation at most by a factor of 2, and doesnot change the synchronisation cost.The above modi�cation essentially transforms the computation into aform of message passing, in which main memory cells represent messages,and writing or reading a value corresponds to sending or receiving a mes-sage. This message-passing version of BSPRAM was referred to as \BSP+"in [Tis96]. Its di�erence from direct BSP mode is that a message can be\delayed", i.e. its sending and receiving may occur in non-adjacent super-steps.It remains to show that the \delayed" messages can be simulated opti-mally by normal BSP messages. We represent the whole BSPRAM compu-tation by an undirected graph. Each superstep is represented by two nodes,one for the input phase and the other for the output phase. Messages arerepresented by edges. Two nodes v1 and v2 are connected by an edge e, ifthe message represented by e is sent in the output phase represented by v1,and received in the input phase represented by v2. The constructed graphis bipartite, with the two parts representing all input and output phasesrespectively. If an input or output phase has cost h, then the degree of itsrepresenting node is at most ph.It is known (see e.g. [Ber85, page 247]), that for any bipartite graphwith maximum degree at most p, there is a colouring of its edges with notmore than p colours, such that all the edges adjacent to the same node arecoloured di�erently. As an easy corollary of this, for an arbitrary bipartitegraph and an arbitrary p, there is a colouring of the edges with not morethan p colours, such for an arbitrary h, any node of degree at most ph hasat most h adjacent edges of of each colour. (This can be proved by splittingeach node of degree at most ph into h nodes of degree at most p.)We use the above theorem to colour the computation graph. We thenregard the colour of each edge as the identi�er of a BSP processor that mustobtain the corresponding message from the sending processor, keep it in itslocal memory for as long as necessary, and then transfer the message to thereceiving processor. The communication and synchronisation costs of thecomputation are increased at most by a factor of 2.(ii) The proof is similar to that of (i). The only di�erence is that, dueto concurrent reading and writing, each message has to be combined fromcontributions of several processors before being sent, and broadcast to sev-eral processors after being received. Consider a particular superstep in thecomputation. By symmetry, we need to analyse only the input phase. Si-multaneous broadcasting of received messages is done by a method whichgeneralises the simultaneous broadcast technique from Section 2.2. Withoutloss of generality, we assume that the communication cost of the consideredinput phase is h = � = p�, 0 < � < 1. Each message is broadcast by a treeof maximum degree h and height at most ��1 (the tree does not have to be
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2.3. THE BSPRAM MODEL 17balanced). The broadcasting forest is partitioned among the processors sothat on each level the total degree of nodes computed in any processor is atmost 2h. Such partitioning can be easily obtained by a greedy algorithm.The communication cost of the computation is increased at most by a factorof 2��1, and the synchronisation cost at most by a factor of ��1.(iii) Partition each granule into p equal subgranules. For each granule,choose an arbitrary balanced distribution of its subgranules across the pro-cessors.An input phase of the BSPRAM algorithm is simulated by two BSPsupersteps. In the �rst superstep, a processor broadcasts a request for eachgranule that it must read. Note that since the subgranules of every granuleare distributed evenly, all processors receive an identical set of requests. Inthe second superstep, a processor satis�es the received requests by sendingthe locally stored subgranules of the requested granules to the requestingprocessors.An output phase of the BSPRAM algorithm is simulated by one BSPsuperstep. In this superstep, a processor divides each granule that it mustwrite into p subgranules, and sends to every processor the appropriate sub-granules. Having received its subgranules, each processor combines any con-currently written data, and then updates the locally stored subgranules.The communication and synchronisation costs of the computation areincreased at most by a factor of 2. �The proofs of Theorems 2 and 3 show that a BSP computer can executemany practical BSPRAM algorithms within a low constant factor of theircost. For two important classes of algorithms | communication-obliviousalgorithms and algorithms with su�cient granularity | the simulation isdeterministic and particularly simple.It is intuitively clear that in general, the BSPRAM shared memory mech-anism is at least as powerful as BSP message passing. However, not everyBSP algorithm can be optimally simulated on a BSPRAM, due to di�erentinput-output conventions. The following result gives a simulation, which issu�cient for most practical applications.Theorem 4. An optimal deterministic simulation on an EREW BSPRAM(p; g; l)can be achieved for any BSP(p; g; l) algorithm with slackness � � p.Proof. The main memory of a BSPRAM is partitioned into p2 areas. Eacharea corresponds to a pair of communicating BSP processors. Sending amessage from processor p1 to processor p2 is implemented by p1 writing themessage, preceded by its length, to the area corresponding to the pair p; q.Receiving this message is implemented by q reading the length, and thenthe message (if the length is nonzero). �In the rest of this thesis, we develop and analyse BSP algorithms forsome common computational problems. The BSPRAM model is used as the
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18 CHAPTER 2. BSP COMPUTATIONbasis of our presentation. Sometimes it is convenient to use BSP messagepassing for (some part of) the computation, while keeping BSPRAM sharedmemory for input-output. In such cases we extend the BSPRAM modelby assuming that the processors, in addition to the shared memory, areconnected by a BSP-style communication network. In this extended model,a computation is a mixture of BSPRAM-style and BSP-style supersteps;we will say that the computation switches between shared-memory modeand message-passing mode. Such mixed algorithms can be translated intopure BSP by the simulation mechanisms of Theorems 2, 3, and into pureBSPRAM by Theorem 4.When analysing slackness and granularity, we will often ignore a partof the computation which is non-critical, i.e. does not a�ect the asymptoticcost of the whole algorithm. The reason for it is that such non-criticalcomputation may be simulated non-optimally without reducing the overallperformance. Every time when such an omission is made, we will indicateexplicitly the part of the computation which is considered non-critical.
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Chapter 3Combinatorial computationin the BSP model3.1 Complete binary tree computationOne of the main divisions in computer science is between \algebraic" and\combinatorial" computation. Both terms are usually understood in a broadsense, and some algorithms fall under both categories. We will considercomputational problems of an algebraic nature in Chapters 4 and 5. In thischapter, we concentrate on simple combinatorial objects, such as dags, ar-rays, linked lists and trees. The �rst few sections deal with BSP computationof dags.As de�ned in Section 2.1, a dag is a directed acyclic graph. We willusually ignore terminal nodes when establishing the size and the depth ofa dag. Also, we will not show terminal nodes in pictures of dags, whenthis does not create confusion. By computation of a dag we understandcomputation of a circuit based on that dag. When a dag is computed inparallel, we call an edge u! v local, if it does not require communication |that is, the set of processors computing v is a subset of the set of processorscomputing u. We call a node v local, if all its incoming edges are local |that is, any processor computing v computes also all predecessors of v.The communication cost of parallel dag computation has been analysede.g. in [PU87, PY90, JKS93]. These papers adopt a synchronous commu-nication cost model, where a nonlocal edge incurs a �xed communicationdelay. The number of processors is unbounded. A node may be computed,in general, more than once by di�erent processors. Paper [JKS93] showsthat such recomputation of nodes is necessary for an asymptotically opti-mal computation of certain dags in the given model.In a BSP dag computation, we also allow recomputation of nodes. How-ever, it is not required by any of the algorithms in this chapter.We begin with a simple problem of computing a circuit based on a com-19
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20 CHAPTER 3. COMBINATORIAL COMPUTATION IN BSP
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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b b b b b b b bFigure 3.1: Complete binary tree cbtree(16)cbtree(4)cbtree(4)0 1 2 3 cbtree(4)4 5 6 7 cbtree(4)8 9 10 11 cbtree(4)12 13 14 15Figure 3.2: BSPRAM computation of cbtree(16)plete binary tree. This problem often occurs in practice, and has importantapplications to other problems, such as computing all-pre�x sums. Theanalysis of complete binary tree computation will help us to illustrate theBSPRAM model, as well as the concepts of communication-obliviousness,slackness and granularity.As in any circuit, each node in the tree represents an elementary opera-tion. Depending on the nature of the computation, we can view the node'sparent as the input and the children as the outputs, or vice versa. We willcall these two versions of tree computation top-to-bottom and bottom-to-top,respectively. By symmetry, we need to analyse only one of the two. Wechoose top-to-bottom computation, which generalises the broadcast prob-lem considered in Section 2.2 (the operation of each node in the case ofbroadcast is simple replication of the input). We denote the complete one-input, n-output binary tree dag by cbtree(n). This dag has n�1 nonterminalnodes, and depth log n. Figure 3.1 shows the dag cbtree(16).For a BSPRAM computation of the tree, we assume that the input andthe outputs are stored in the main memory. The computation method re-sembles the broadcast techniques from Section 2.2. Figure 3.2 shows thecomputation for n = 16, p = 4.
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3.1. COMPLETE BINARY TREE COMPUTATION 21Algorithm 1. Computation of a complete binary tree.Parameters: integer n � p1+� for some constant � > 0; a circuit based oncbtree(n).Input: value x.Output: values yi, 0 � i < n, computed by the circuit.Description. The computation is performed on an EREWBSPRAM(p; g; l)in shared-memory or message-passing mode. If � � 1, the computation pro-ceeds in two supersteps. The �rst superstep computes the top log p levelsof the tree, and the second superstep the remaining logn � log p levels. If0 < � < 1, the computation proceeds in 1 + ��1 supersteps. Each superstepcomputes � log p levels of the tree, except the last superstep, which computesthe remaining logn� log p levels.Cost analysis. For � � 1, the local computation, communication and syn-chronisation costs areW = O(n=p) H = O(n=p) S = O(1)For 0 < � < 1, the local computation, communication and synchronisa-tion costs areW = O(n=p) H = O(��1 � n=p) = O(n=p) S = O(��1) = O(1)The algorithm is oblivious, with slackness and granularity � =  = 1. �Bottom-to-top complete binary tree computation is symmetric to the algo-rithm above.In Algorithm 1, each of the three cost values W , H, S, taken indepen-dently, is trivially optimal.An important application of complete binary trees is the problem ofcomputing all-pre�x sums on an array of size n (see e.g. [Ble93, LD94]). Theproblem is formulated as follows: given an input array (x0; x1; : : : ; xn�1),compute the output (y0; y1; : : : ; yn�1) = (x0; x0 �x1; : : : ; x0 �x1 � � � � �xn�1),where � is an associative operator computable in time O(1). A standardmethod of computing all-pre�x sums in parallel, proposed in [BK82] (seealso [LD94]), can be represented by a dag allpref (n), shown in Figure 3.3for n = 8. Here, the action of a node with inputs x, y isx y�x x � y
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22 CHAPTER 3. COMBINATORIAL COMPUTATION IN BSP�
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bbc bb bb bbFigure 3.3: All-pre�x sums dag allpref (8)To expose the symmetry of the method, we have introduced a dummy value,shown in Figure 3.3 by a dot �. The action of a node with inputs �, x is� x�� xThe dag allpref (n) consists of two linked complete binary trees, the�rst computed bottom-to-top, the second top-to-bottom. In total, the dagallpref (n) has 2n� 2 nonterminal nodes, and depth 2 log n. If n � p1+� fora constant � > 0, Algorithm 1 allows one to compute all-pre�x sums withBSP cost W = O(n=p), H = O(n=p), S = O(1).3.2 Buttery dag computationThe buttery dag represents the dependence pattern of the Fast FourierTransform. Another application of the buttery dag is in the bitonic sortingnetwork (see e.g. [CLR90]). Parallel algorithms for the buttery dag com-putation have been proposed in various parallel models (see e.g. [CLR90,J�aJ92]).The buttery dag by(n) takes n inputs xi, and produces n outputs yi,0 � i < n. The dag contains logn levels of nodes, with n=2 nodes in eachlevel. For all i, 0 � i < n, let us de�ne u0i = xi, and let uki , 1 � k � logn,
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Figure 3.4: Buttery dag by(16)denote the output of level k�1, so that ulog ni = yi. In level k, there is a nodewith inputs uki , ukj , and with outputs uk+1i , uk+1j , if and only if jj � ij = 2k.In total, there are 1=2 � n logn nonterminal nodes, and the depth of the dagis log n. Figure 3.4 shows the buttery dag by(16).As observed in [PY90, Val90a] (see also [GHSJ96]), the buttery dagcan be partitioned in a way suitable for bulk-synchronous parallel compu-tation. The computation of a level in by(n) consists of n=2 independentcomputations of by(2). Similarly, the computation of any k consecutivelevels consists of n=2k independent computations of by(2k). Therefore,the buttery dag computation can be split into two stages, each comprising1=2 � log n levels and consisting of n1=2 independent tasks. If n is su�cientlylarge with respect to p, each of the two stages can be completed in onesuperstep.Figure 3.5 shows the two-superstep computation of by(16). In each su-perstep, four independent computations of by(4) are performed. In general,the algorithm is as follows.Algorithm 2. Computation of the buttery dag by(n).Parameters: integer n � p2; a circuit based on by(n).Input: values xi, 0 � i < n.Output: values yi, 0 � i < n, computed by the circuit.Description. The computation is performed on an EREWBSPRAM(p; g; l)and proceeds in two supersteps, each comprising 1=2 � logn levels. In both
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24 CHAPTER 3. COMBINATORIAL COMPUTATION IN BSP
by(4)0 1 2 3
by(4)0 4 8 12

by(4)4 5 6 7
by(4)1 5 9 13

by(4)8 9 10 11
by(4)2 6 10 14

by(4)12 13 14 15
by(4)3 7 11 15Figure 3.5: BSPRAM computation of by(16)supersteps, each processor is assigned n1=2=p independent buttery dags ofsize n1=2.Cost analysis. The local computation, communication and synchronisa-tion costs areW = O(n logn=p) H = O(n=p) S = O(1)The algorithm is oblivious, with slackness � = n=p, and granularity  =n=p2. �The asymptotic BSP costs of Algorithm 2 are independently optimal.E�cient BSP computation of a buttery dag for 1 � n < p2 is consideredin [Val90a].3.3 Cube dag computationThe cube dag de�nes the dependence pattern that characterises a largenumber of scienti�c algorithms. Here we describe a BSPRAM version ofthe BSP cube dag algorithm from [McC95]. For simplicity, we considerthe computation of a three-dimensional cube dag. The algorithm for otherdimensions is similar.The three-dimensional cube dag cube3(n) with inputs x(1)jk , x(2)ik , x(3)ij , andoutputs y(1)jk , y(2)ik , y(3)ij , 0 � i; j; k < n, contains n3 nonterminal nodes vijk,such thatv0jk, vi0k, vij0 input respectively x(1)jk , x(2)ik , x(3)ijvijk is connected to each of the nodesvi+1;j;k, vi;j+1;k, vi;j;k+1 whenever such node existsvn�1;j;k, vi;n�1;k, vi;j;n�1 produce respectively y(1)jk , y(2)ik , y(3)ij (3.1)
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mmmFigure 3.7: BSPRAM computation of cube3(n), m = n� 1The depth of the dag is 3n� 2. Figure 3.6 shows the cube dag cube3(4).The BSP algorithm for computing the dag cube3(n) is given in [McC95].In this algorithm, the array V = (vijk) is partitioned into p3=2 regular cubicblocks of size n=p1=2. We denote these blocks by Vijk, 0 � i; j; k < p1=2.Each block de�nes a dag isomorphic to cube3�n=p1=2�. The algorithm com-putes a block Vijk as soon as the data from its predecessors Vi�1;j;k, Vi;j�1;k,Vi;j;k�1 become available. The diagonal layer of simultaneously computedindependent blocks forms the computation \wavefront".Figure 3.7 shows a stage in the BSP computation of cube3(n). Theshaded diagonal layer of blocks is the current wavefront. The total numberof layers is 3p1=2�2, therefore the computation can be completed in O(p1=2)supersteps.Algorithm 3. Computation of the cube dag cube3(n).Parameters: integer n � p1=2; a circuit based on cube3(n).Input: values x(1)jk , x(2)ik , x(3)ij , 0 � i; j; k < n.Output: values y(1)jk , y(2)ik , y(3)ij , 0 � i; j; k < n, computed by the circuit.
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26 CHAPTER 3. COMBINATORIAL COMPUTATION IN BSPDescription. The computation is performed on an EREWBSPRAM(p; g; l)and proceeds in 3p1=2 � 2 stages, each comprising a constant number of su-persteps. In stage s, 0 � s < 3p1=2 � 2, the blocks Vijk with i + j + k = sare computed. The maximum number of blocks computed in any one stageis 3p=4.Cost analysis. The local computation cost is W = O(n3=p). The com-putation of a block requires the communication of O(n2=p) values on thesurface of the block. Therefore, the communication cost of each stage ish = O(n2=p). The total communication cost is H = h � p1=2 = O�n2=p1=2�.The synchronisation cost is S = O�p1=2�. The algorithm is oblivious, withslackness and granularity � =  = n2=p. �The de�nition of a three-dimensional cube dag can be naturally gener-alised to any dimension. A two-dimensional dag is called the diamond dag.It can be computed by an algorithm similar to Algorithm 3 with BSP costW = O(n2=p), H = O(n), S = O(p). In general, the BSP cost of computinga cube dag cubed(n) is W = O(nd=p), H = O�nd�1=p d�2d�1 �, S = O�p 1d�1 �.The BSP cost values of Algorithm 3 are not independently optimal.However, H and S are optimal for any computation withW = O(n3=p). Toprove the optimality in H, we need the following lemma.Lemma 1. Any BSPRAM(p; g; l) computation of cube3(n) with local com-putation cost W � 5=36 � n3 requires communication volume H � 1=6 � n2.Proof. Suppose the communication volume is less than 1=6 � n2. Then thedag must have less than 1=6 � n2 nonlocal nodes. Partition the dag into nparallel planes. The middle plane divides the dag into a lower-indexed anda higher-indexed half. At least one of the planes in the higher-indexed halfcontains less than (1=6 � n2)=(1=2 � n) = 1=3 � n nonlocal nodes; we will callit the base plane. Consider two orthogonal partitionings of the base planeinto n parallel lines. In each partitioning, there are more than 2=3 � n linesconsisting of local nodes only. The intersection of these two line familiescontains more than (2=3 � n)2 = 4=9 � n2 nodes. We call this intersection thebase diamond, and the highest-indexed node in the base diamond the basenode.Consider the set of lines intersecting the base plane orthogonally at thebase diamond. More than 4=9 �n2�1=6 �n2 = 5=18 �n2 of the lines consist oflocal nodes only. In total, we have more than 5=18�n3 local nodes, 5=36�n3 ofwhich are in the lower-indexed half of the dag. By construction, each of thesenodes must be computed by at least the same processors as the base node.Therefore, the local computation cost is more than 5=36 � n3. Conversely, ifthe local computation cost is at most 5=36 � n3, the communication volumeis at least 1=6 � n2. �The conditional optimality of Algorithm 3 can now be demonstrated asfollows.
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3.4. SORTING 27Theorem 5. Any BSPRAM(p; g; l) computation of cube3(n) withW = O(n3=p)requires (i) W = �(n3=p), (ii) H = 
�n2=p1=2�, (iii) S = 
�p1=2�.Proof. (i) Trivial.(ii) The proof is an extension of the proof given in [PU87] for the diamonddag.Let W = O(n3=p). Partition the cube dag into p3=2 cubic blocks of sizen=p1=2. Consider 3p chains of blocks parallel to the main diagonal. In everychain, the computation of a block can start only after each node in theprevious block has been computed at least once. For the purpose of a lowerbound, we will ignore all computation in a block after the highest-indexednode has been computed once.There are 3=4 �p \long" chains, each containing at least 1=2 �p1=2 blocks.Since the local computation cost of each chain is O(n3=p), there are 
�p1=2�blocks in each \long" chain with local computation cost at most 5=36 �n3=p3=2. By Lemma 1, the communication volume of such a block is at least1=6 � n2=p. The total number of such blocks is (3=4 � p) �
�p1=2� = 
�p3=2�.Therefore, the total communication volume must be at least (1=6 � n2=p) �
�p3=2� = 
�n2 � p1=2�. Even when communication is perfectly balanced,the total communication cost H = 
�n2 � p1=2�=p = 
�n2=p1=2�.(iii) Nodes of the main diagonal viii, 0 � i < n, �rst computed in eachparticular superstep, form a consecutive segment. We denote the sizes ofthese segments by ms, 0 � s < S, where P0�s<Sms = n. Since thecommunication within a superstep is not allowed, all nodes in the diagonalcubic block of size ms spanned by the segment s must be computed bythe processor that �rst computes the highest-indexed node of the block.The local computation cost of a block is therefore m3s. The total cost oflocal computation is bounded from below by the sum over all supersteps:P0�s<Sm3s. By H�older's inequality,n = X0�s<Sms = X0�s<S 1 �ms � S2=3 �� X0�s<Sm3s�1=3 � S2=3 �W 1=3Hence by assumption S � n3=2=W 1=2 = 
(p1=2). �Theorem 5 can be easily generalised to other dimensions.3.4 SortingSorting is a classical problem of parallel computing. Many parallel sort-ing algorithms of di�erent complexity have been proposed (see e.g. [GR88,J�aJ92, Col93, TB95] and references therein). Here we consider comparison-based sorting of an array x = (xi), 1 � i � n. Without loss of generality,
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28 CHAPTER 3. COMBINATORIAL COMPUTATION IN BSPwe may assume that the elements of x are distinct (otherwise, we shouldattach a unique tag to each element). Let ha; bi denote an open interval, i.e.the set of all x in x such that a < x < b.Probably the simplest parallel sorting algorithm is parallel sorting byregular sampling (PSRS), proposed in [SS92] (see also its discussion in[LLS+93]). Paper [HJB] describes an optimised version of the algorithm,and its e�cient implementation on a variety of platforms.The PSRS algorithm proceeds as follows. First, the array x is parti-tioned into p subarrays x1; : : : ;xp, each of size n=p. The subarrays xq aresorted independently by an optimal sequential algorithm. The problem nowconsists in merging the p sorted subarrays.In the �rst stage of merging, p + 1 regularly spaced primary samplesare selected from each subarray (the �rst and the last elements of a sub-array are included among the samples). We denote the samples of thesubarray xq by �xq0; : : : ; �xqp. The samples divide each subarray into p pri-mary blocks of size at most n=p2. We denote the primary blocks of xq by��xq0; �xq1�; : : : ; ��xqp�1; �xqp�. Then, p � (p + 1) primary samples are collected to-gether and sorted by an arbitrary sequential algorithm. After that, we selectp+ 1 regularly spaced secondary samples from the sorted array of primarysamples (the �rst and the last elements are again included in the samples).We denote the secondary samples by ��x0; : : : ; ��xp. The secondary samplespartition the elements of x into p secondary blocks, corresponding to the in-tervals 
��x0; ��x1�; : : : ; 
��xp�1; ��xp�. Each secondary block is distributed acrossthe processors. Now it remains to collect the elements of each secondaryblock in one particular processor.Let us show that any secondary block contains at most 3n=p elements.For a �xed secondary block de�ned by 
��xk; ��xk+1�, we divide all the primaryblocks of x into three categories. We call a primary block ��xqi ; �xqi+1� an innerblock, if 
�xqi ; �xqi+1� � 
��xk; ��xk+1�; an outer block, if 
�xqi ; �xqi+1�\
��xk; ��xk+1� = ;;and a boundary block, if it is neither inner nor outer. With respect to anysecondary block, there are at most p inner primary blocks in total (becausethere are only p primary samples inside the secondary block), and at mosttwo boundary primary blocks in each subarray (because a boundary blockmust contain one or both secondary block boundaries). Therefore, the sizeof a secondary block is at most n=p2 � (p+ 2p) = 3n=p. In the second stageof merging, the elements of each secondary block can be collected in timeO(n=p), and then sorted by an e�cient sequential algorithm.The method is illustrated in Figure 3.8 for p = 3. The state of the arrayx after local sorting of the subarrays is represented by three horizontal barsat the top. Primary samples are shown as white dots. Dotted lines showthe rearrangement of primary samples into a sorted array at the bottom;note that the order of primary samples from each subarray is preserved, butthe samples from di�erent subarrays may be interleaved. The dashed barsat the bottom show the elements of x assumed to lie between the samples;
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3.4. SORTING 29x1�x10 �x11 �x12 �x13 x2�x20 �x21 �x22 �x23 x3�x30 �x31 �x32 �x33
��x0 ��x1 ��x2 ��x3
bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bcb b b bFigure 3.8: BSPRAM sorting by regular samplingthe number of elements between adjacent primary samples is not necessar-ily equal. Black dots indicate the secondary samples. The secondary block
��x1; ��x2� is shown by cross-hatching. Primary blocks that are inner, bound-ary and outer for 
��x1; ��x2� are shown by cross-hatching, simple hatchingand no hatching respectively. Only inner and boundary blocks may containelements from 
��x1; ��x2�.The sorting algorithm based on PSRS can be easily implemented in theBSPRAM model. We assume that the input and output arrays are storedin the main memory.Algorithm 4. Sorting by regular sampling .Parameter: integer n � p3.Input: array x = (xi), 0 � i < n, with all xi distinct.Output: x rearranged in increasing order.Description. The computation is performed on a CRCW BSPRAM(p; g; l)and proceeds in three supersteps. In the �rst superstep, a processor picks asubarray xq, reads it, sorts it with an e�cient sequential algorithm, selectsp+1 primary samples, and writes them to the main memory. In the secondsuperstep, the processors perform an identical computation: read the p �(p+1) primary samples, sort them and select p secondary samples. E�ciencyof the above computation with samples is not critical, since the number ofsamples does not depend on n. In the third superstep, a processor picks asecondary block and collects its elements. In order to do this, a processorreceives from other processors (in message-passing mode) all primary blocksthat may intersect with the assigned secondary block. The number of suchblocks is at most 3p, and their total size is at most 3n=p. The processormerges the received primary blocks, discarding the values that do not belong
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30 CHAPTER 3. COMBINATORIAL COMPUTATION IN BSPto the assigned secondary block. The merged result is written to the mainmemory.Cost analysis. The local computation, communication and synchronisa-tion costs areW = O(n logn=p) H = O(n=p) S = O(1)The algorithm is not communication-oblivious. Its slackness and granularityare � = n=p,  = n=p2 (ignoring non-critical computations with samples).�Lower bounds on communication complexity of sorting for various par-allel models can be found e.g. in [SS92, ABK95]. The asymptotic BSP costsof Algorithm 4 are independently optimal.Paper [Goo96] presents a more complex BSP sorting algorithm, asymp-totically optimal for any n � p. Its BSP costs are W = O(n log n=p),H = O�n=p � log n= log(n=p)�, S = O�log n= log(n=p)�. For n � p3, the algo-rithm is identical to PSRS. For smaller values of n, it uses a pipelined treemerging technique similar to the one employed by Cole's algorithm (see e.g.[Col93]). Despite its asymptotic optimality, the algorithm from [Goo96] isunlikely to be practical in the case of n � p. A more practical BSP sortingalgorithm for small values of n is described in [GS96].3.5 List contractionThis and the following sections consider BSPRAM computation on pointerstructures, such as linked lists and trees. A linked list is a sequence of items.The order of items is de�ned by pointers: each item contains a pointer tothe next item in the sequence. The last item contains the null pointer. The�rst and the last items of the list are called its head and tail, respectively.A doubly-linked list contains backward as well as forward pointers.The most common problem on linked (or doubly-linked) lists is list rank-ing : for each item determine its distance from the head (or the tail) of the list(see e.g. [CLR90, J�aJ92, RMMM93]). List ranking can be applied to moregeneral list problems, such as computing all-pre�x sums on a list. Following[LM88], we view these problems as instances of an abstract problem of listcontraction: given an abstract operation of merging two adjacent items asa primitive, contract the list to a single item. Implementation of the merg-ing primitive is problem-dependent; it usually involves pointer jumping andsome payload operations (e.g. summation of item values). We assume thatthe computation cost of merging two items is O(1).In a sequential model of computation, a list can be contracted by a triv-ial algorithm that traverses the list of n items in �(n) time. The problemis rather more complicated on parallel models. The easiest way to obtain
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3.5. LIST CONTRACTION 31an e�cient parallel list contraction algorithm is by randomisation. Paper[MR85] introduced a technique of random mating. The random mating algo-rithm proceeds in a sequence of rounds. In each round every item is markedeither forward-looking of backward-looking by ipping an independent unbi-ased coin. Then pairs of adjacent items that \look at each other" merge.The procedure is repeated until only one item is left. One round of the algo-rithm reduces the size of the list by about a quarter, therefore the expectednumber of parallel steps is �(log n).The expected amount of computation performed by the above algorithmis optimal; however, in the PRAM model the time-processor product1 isstill suboptimal. Many attempts have been made to improve the PRAMtime-processor e�ciency of randomised list contraction. An algorithm from[RM96] is time-processor optimal. Although it is slightly suboptimal in time,it performs better in practice than the more sophisticated algorithm from[AM90], optimal both in time and in the time-processor product.Optimal e�ciency for randomised list contraction is much easier to achievein the BSPRAM model, given su�cient slackness. The following straight-forward implementation of random mating is based on a BSP algorithmsuggested by [McC96a].Algorithm 5. Randomised list contraction.Parameter: integer n � p2 � log p.Input: linked list of size n.Output: input list contracted to a single item.Description. The computation is performed on an EREWBSPRAM(p; g; l).Each processor reads an equal number of input items from the main mem-ory. After that, the computation is performed in message-passing mode andproceeds in two stages.First stage. We reduce the list from n to n=p items by repeated rounds ofrandom mating. Each round is implemented by a superstep, and consists inmerging all mating pairs. The processor to hold each merged pair is chosenat random (other methods of choice are possible).Second stage. The remaining n=p items are collected in a single processor.This processor completes the contraction by local computation.Cost analysis. An analysis along the lines of [LM88] shows that O(log p)rounds will su�ce on the �rst stage with high probability. Since the sizeof the list is expected to decrease exponentially, the communication cost of1This time-processor product is also sometimes called `work'; we use the term work forthe actual number of operations performed, which may be smaller than the time-processorproduct, due to some processors being idle for some time.
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32 CHAPTER 3. COMBINATORIAL COMPUTATION IN BSPthe �rst round of mating, equal to O(n=p), dominates all subsequent com-munication with high probability. Expected (with high probability) localcomputation, communication and synchronisation costs of the whole algo-rithm are Wexp = O(n=p) Hexp = O(n=p) Sexp = O(log p)The algorithm is not communication-oblivious. Its expected slackness is�exp = n=p2. Its granularity is  = 1. �Another direction of research has been aimed at providing an optimaldeterministic algorithm for list contraction. Known e�cient deterministicalgorithms for PRAM (see e.g. [J�aJ92, RMMM93]) typically involve themethod of symmetry breaking by deterministic coin tossing introduced in[CV86]. Such algorithms are complicated and often assume non-standardarithmetic capabilities of the computational model, e.g. bitwise operationson integers. As in the case of randomised algorithms, it is much easier todesign an optimal deterministic algorithm for list contraction in the BSPmodel, provided that the input size is su�cient. Our deterministic listcontraction algorithm is based on the technique of deterministic mating,described below.The algorithm proceeds in several rounds. Each round starts with con-tracting all chains of adjacent items that are local to any particular pro-cessor. Any item that remains in the list has both neighbours outside itscontaining processor.After that, a complete weighted digraph is constructed. The graph hasp nodes, each node representing a processor. The weight of an edge v1 ! v2is de�ned as the number of adjacent pairs of items, where the leading andthe trailing item are contained in the processor represented by v1 and v2respectively. The graph is used to mark each processor either forward-lookingor backward-looking. Let m be the total number of items before the currentround. The forward and backward marks are assigned in such a way thatthe number of adjacent pairs of items \looking at each other" is at leastm=4. Such a marking always exists and can be easily computed from thegraph by a greedy algorithm in sequential time O(p2).Each item assumes the mark of the containing processor. Then pairsof neighbours that \look at each other" merge. At this stage, the totalnumber of remaining items is at most 3m=4, but their distribution acrossthe processors may not be even. Therefore, it is necessary to redistributethe items so that each processor receives at most 3m=4p of them. Thiscompletes the current round.The BSPRAM implementation of deterministic mating is as follows.Algorithm 6. Deterministic list contraction.Parameter: integer n � p3 � log p.
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3.6. TREE CONTRACTION 33Input: linked list of size n.Output: input list contracted to a single item.Description. The computation is performed on an EREWBSPRAM(p; g; l).Each processor reads an equal number of input items from the main mem-ory. After that, the computation is performed in message-passing mode andproceeds in two stages.First stage. We reduce the list from n to n=p items by repeated rounds ofdeterministic mating. Each round is implemented by three supersteps.In the �rst superstep, each processor reduces all local chains and com-putes the number of links from local items to items in each of the otherprocessors. This establishes the weights of edges leaving the processor'snode in the representing graph. After that, the whole graph is collectedin a single processor. This processor computes the marks and tells eachprocessor its mark.In the second superstep, pairs of adjacent items that \look at each other"merge. The processor to hold the merged pair is chosen arbitrarily betweenthe two processors holding the original items.The third superstep redistributes the items so that each processor re-ceives at most 3m=4p of them. This completes the current round.Second stage. The remaining n=p items are collected in a single processor.This processor completes the contraction by local computation.Cost analysis. The total number of rounds necessary to reduce the listto n=p items in the �rst stage is O(log p). Since the size of the list de-creases exponentially, the communication cost of the �rst round, equal toO(n=p), dominates all subsequent communication. The local computation,communication and synchronisation costs of the whole algorithm areW = O(n=p) H = O(n=p) S = O(log p)The algorithm is not communication-oblivious. Its slackness and granularityare � = n=p2,  = 1 (ignoring non-critical computation of processor marks).�In Algorithms 5 and 6, the asymptotic values of W , H, S are not in-dependently optimal. Intuitively, it seems likely that H and S are optimalfor any computation with W = O(n=p), but the question of a proof remainsopen. Some lower bounds for parallel list contraction have been proved in[Sib97].3.6 Tree contractionBoth the randomised and the deterministic versions of list contraction can beused to solve the problem of tree contraction. This well-studied problem (see
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34 CHAPTER 3. COMBINATORIAL COMPUTATION IN BSP
Figure 3.9: BSPRAM tree contractione.g. [J�aJ92, RMMM93]) generalises list contraction. As before, the problemis de�ned in terms of an abstract operation of merging two adjacent nodesin a binary tree; the merging operation is considered primitive. In treecontraction, two kinds of merging are allowed:� raking, where a leaf is absorbed into its parent node. The parentand child of the resulting node are respectively the parent and theremaining child of the absorbing node.� compression, where a non-leaf with only one child absorbs its child.The parent and children of the resulting node are respectively theparent of and the absorbing node and the children of the absorbednode.When the absorbing node has only one child, which is a leaf, merging canbe classi�ed both as raking and compression.Similarly to list contraction, the goal of tree contraction is to reducethe tree to a single node. Tree contraction provides an e�cient solution toproblems connected with parallel evaluation of arithmetic expressions. Itis also used as a subroutine in some parallel graph algorithms, such as theminimum spanning tree computation.Several approaches to tree contraction have been developed for the PRAMmodel. One method to obtain an e�cient PRAM algorithm for tree con-traction is by generalising the technique of random mating (see e.g. [LM88]).Another possibility is to reduce the problem to list contraction by consider-ing lists associated with the tree, such as its Euler tour. The latter approachis followed in [GMT88] (see also [RMMM93]). Although not originally in-tended for the BSP model, the algorithm from [GMT88] (more precisely, its\m-contraction" phase) can be e�ciently implemented on a BSPRAM. Wesketch this implementation below.The main idea of the method is to partition a tree of size n into edge-disjoint subtrees of size at most n=p, called bridges. Bridges possess animportant characteristic property: each of them is attached to the tree byat most one leaf, and by the root (unless the bridge contains the root of thetree, and all its children). Figure 3.9 shows a tree partitioned into seven
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3.6. TREE CONTRACTION 35bridges. Paper [GMT88] (see also [RMMM93]) shows that such partitioningalways exists, and can be obtained by cutting the tree in at most 2p � 1nodes. The partitioning can be computed by list contraction (speci�cally,all-pre�x sums computation) on the Euler tour of the tree.The BSPRAM algorithm is as follows.Algorithm 7. Tree contraction.Parameter: integer n � p2 � log p (respectively, n � p3 � log p) for therandomised (respectively, deterministic) version of the algorithm.Input: tree of size n.Output: input tree contracted to a single node.Description. The computation is performed on an EREWBSPRAM(p; g; l).Each processor reads an equal number of input nodes from the main mem-ory. After this, the computation is performed in message-passing mode andproceeds in four stages.First stage. The tree is partitioned into bridges. The partitioning is com-puted by several rounds of list contraction (speci�cally, all-pre�x sums com-putation with varying basic operation) on the Euler tour of the tree. Thelist contraction is performed by Algorithms 5 or 6.Second stage. A distribution of bridges across the processors is computed.By this distribution, each processor is assigned either a single bridge, orseveral bridges with a common root. The total size of the bridges assignedto any single processor is at most n=p. The distribution is computed byanother all-pre�x sums computation on the Euler tour of the tree.Third stage. Each processor receives the assigned bridges and performs se-quential tree contraction on each of them, reducing the bridges to their com-mon root. This is made possible by the characteristic single-leaf attachmentproperty of the bridges.Fourth stage. The remaining tree of size p is collected in a single processor.This processor completes the contraction by local computation.Cost analysis. The partitioning of the tree in the �rst stage and the dis-tribution of the bridges in the second stage are computed by Algorithms 5 or6. Their costs dominate (deterministically or with high probability) the costof the remaining two stages. The costs of the whole algorithm (deterministicor expected with high probability) areWdet/exp = O(n=p) Hdet/exp = O(n=p) Sdet/exp = O(log p)The algorithm is not communication-oblivious. Its slackness and granularityare the same as in Algorithms 5 or Algorithm 6: �det/exp = n=p2,  = 1. �
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36 CHAPTER 3. COMBINATORIAL COMPUTATION IN BSPThus, tree contraction can be performed in the BSPRAM model with theaid of list contraction; little extra e�ort is required. The obtained algorithmfor tree contraction has the same asymptotic costs as the list contractionalgorithm employed.
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Chapter 4Dense matrix computationin the BSP model4.1 Matrix-vector multiplicationMatrix-vector multiplication is a common operation in scienti�c computing,especially in iterative approximation methods. The general problem is de-�ned as computation of the product A�b = c, where A is an n�nmatrix, andb, c are n-vectors over a semiring. The method consists in straightforwardcomputation of the family of linear formsc[i] = nXj=1A[i; j] � b[j] 1 � i � n (4.1)Following (4.1), we need to setc[i] 0 for i = 1; : : : ; n (4.2)and then computec[i] c[i] +A[i; j] � b[j] for all i; j, 1 � i; j � n (4.3)Computation (4.3) for di�erent pairs i; j is independent (although it requiresconcurrent reading from b[j] and concurrent writing to c[i]), and thereforecan be performed in parallel.We assume that matrixA has been initially distributed across the proces-sors, ignoring the BSP cost of such distribution. This assumption is naturalin iterative approximation, where the cost of initial matrix redistribution canbe amortised over a long series of iterations. By assuming that matrix A ispredistributed, we concentrate on the cost of matrix-vector multiplication,rather than the cost of input/output.The BSPRAM algorithm for matrix-vector multiplication is a straight-forward adaptation of the BSP algorithm from [BM93, McC95]. Matrix A is37
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38 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSP

A
bi; j

b b

j
c
bi

Figure 4.1: Matrix-vector multiplication dag
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cFigure 4.2: Matrix-vector multiplication in BSPRAMrepresented by a square of size n in the integer plane (see Figure 4.1). Arraysb, c are represented by projections of the square A onto the coordinate axes.Computation of the product A[i; j] � b[j] requires the input from node b[j],and the output to node c[i]. In order to provide a communication-e�cientBSP algorithm, matrix A must be divided into p regular square blocks ofsize n=p1=2 (see Figure 4.2),A = 0B@ A[[1; 1]] � � � A[[1; p1=2]]... . . . ...A[[p1=2; 1]] � � � A[[p1=2; p1=2]]1CA (4.4)Vectors b, c are divided into p1=2 conforming regular intervals b[[j]], c[[i]] ofsize n=p1=2. Computation (4.2), (4.3) can be expressed in terms of blocks asc[[i]] 0 for i = 1; : : : ; p1=2 (4.5)



www.manaraa.com

4.2. TRIANGULAR SYSTEM SOLUTION 39and then c[[i]] c[[i]] +A[[i; j]] � b[[j]] for all i; j, 1 � i; j � p1=2 (4.6)The initial distribution of A is such that every processor holds a separateblock A[[i; j]], and computes the block product A[[i; j]] � b[[j]] sequentiallyby (4.2), (4.3). The algorithm is as follows.Algorithm 8. Matrix-vector multiplication.Parameters: integer n � p1=2; n � n matrix A over a semiring, predis-tributed across the processors.Input: n-vector b over a semiring.Output: n-vector c = A � b.Description. The computation is performed on a CRCWBSPRAM(p; g; l).After the initialisation step (4.5), the computation proceeds in one super-step. Each processor performs the computation (4.6) for a particular pairi; j. In the input phase, the processor reads the block b[[j]]. Then it com-putes the product A[[i; j]] � b[[j]] by (4.2), (4.3). The computed block is thenwritten to c[[i]] in the main memory. Concurrent writing is resolved by ad-dition of the written blocks to the previous content of c[[i]]. The resultingvector c is the product of A and b.Cost analysis. The local computation, communication and synchronisa-tion costs areW = O(n2=p) H = O(n=p1=2) S = O(1)The algorithm is oblivious, with slackness and granularity � =  = n2=p1=2.�It can be shown that Algorithm 8 is an optimal algorithm for matrix-vector multiplication. The proof is omitted, due to its similarity to theoptimality proof for matrix multiplication (Theorem 7 in Section 4.3).4.2 Triangular system solutionTriangular systems of linear equations play an important role in scienti�ccomputation. One of their most common applications is in solution of gen-eral linear systems, where the system matrix is decomposed into a productof triangular factors, and then the resulting triangular systems are solved.The problem is formulated as follows: given a lower triangular matrix A anda vector c, �nd a vector b such that A � b = c. For a nonsingular matrix Aover a �eld, the solution is b = A�1 �c. The problem can be formulated moregenerally over a semiring, using the closure operation. The generalised prob-lem is: given a lower triangular matrix A and a vector c over a semiring, �nd
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Figure 4.3: Triangular system solution dagthe vector b = A� �c, assuming that the matrix closure A� = I+A+A2+ � � �exists. The equivalence of the original and the generalised problem over a�eld follows from the identity A� = (I �A)�1.Explicit computation of the closure A� requires �(n3) operations. How-ever, there is no need to compute A� explicitly: the standard substitutiontechnique can be used to �nd b = A� � c in sequential time �(n2). Solutionof a triangular system by substitution can be viewed as a dag computation.As before, matrix A is represented by the lower triangular part of a squareof size n in the integer plane (see Figure 4.3). Arrays b, c are representedby projections of the square A onto the coordinate axes. Computation ofthe product A[i; j] � b[j], i > j, requires the input from node A[j; j], andthe output to node A[i; i]. A node A[k; k] represents the computation ofb[k] = A[k; k]� � �c[k]+P1�j<kA[k; j] � b[j]�. It requires the input from nodec[i], and from all products A[k; j] � b[j], 1 � j < k. The output of a nodeA[k; k] is to node b[i], and to all products A[i; k] � b[k], k < i � n.The above computation can also be arranged as a diamond dag cube2(n)(see e.g. [McC95]). Here, the action of a node vij , i > j, isb[j]P1�k<j A[i; k] � b[k] = � vij �+A[i; j] � b[j]b[j]
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b[4]Figure 4.4: Triangular system solution by a diamond dagand the action of a node vkk is A[k; k]� � (c[k] + �)= b[k]P1�j<kA[k; j] � b[j] = � vkk c[k]b[k] =A[k; k]� � (c[k] + �)Nodes vij , i < j, are not used. Figure 4.4 shows the resulting dag. It issimilar to the diamond dag cube2(n), and can be computed by Algorithm 3with BSP cost W = O(n2=p), H = O(n), S = O(p) (see Section 3.3).An alternative approach to triangular system solution is recursion. Therecursive algorithm works by dividing matrix A into square blocks of sizen=2, A = �A11A21 A22� (4.7)dividing vectors b, c into conforming intervals of size n=2,b = �b1b2� c = �c1c2� (4.8)and then applying block substitution:b1  A�11 � c1 b2  A�22 � (c2 +A21 � b1) (4.9)
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42 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSPThe procedure can be applied recursively to �nd the vectors A�11 � c1 andA�22 � (c2 +A21 � b1). The resulting vector isA� � c = � A�11 � c1A�22 � (c2 +A21 � A�11c1)� (4.10)As in the previous section, we assume that matrix A has been initiallydistributed across the processors at no BSP cost. This assumption is naturalin typical applications, such as solution of general linear systems, where thematrix A is obtained from a previous computation. By assuming that thematrix A is predistributed, we concentrate, as before, on the cost of solvingthe triangular system, rather than the cost of input/output.We now describe the allocation of block triangular systems and blockmultiplication tasks in (4.9) to the BSPRAM processors. Initially, all pprocessors are available to compute the triangular system solution A�11 � c1.There is no substantial parallelism between block triangular system solutionand block multiplication tasks in (4.9); we can only exploit the parallelismwithin block multiplication. Therefore, the recursion tree is computed indepth-�rst order. In each level of recursion, every block multiplication in(4.9) is performed in parallel by all processors available at that level. Eachtriangular system in (4.9) is also solved in parallel by all processors availableat that level, if the block size is large enough. When blocks become su�-ciently small, triangular systems are solved sequentially by an arbitrarilychosen processor.The initial distribution of A should allow one to perform the describedcomputations without redistributing the matrix. The easiest way of achiev-ing this is to partition matrix A into p2 regular square blocks A[[i; j]],0 � i; j < p. A processor q can be assigned to hold e.g. all blocks A[[i; q]]for 0 � i < p, or all blocks A[[q; j]] for 0 � j < p, or all blocks A[[i; j]] withi� j = q. The algorithm is as follows.Algorithm 9. Triangular system solution.Parameters: integer n � p3=2; n � n matrix A over a semiring, predis-tributed across the processors.Input: n-vector c over a semiring.Output: n-vector b = A� � c.Description. The computation is performed on a CRCWBSPRAM(p; g; l),and is de�ned by recursion on the size of the matrix and vectors. Denotethe matrix size at the current level of recursion by m, keeping n for the orig-inal size. Let n0 = n=p. Value n0 is the threshold, at which the algorithmswitches from parallel to sequential computation.In each level of recursion, the matrix and vectors are divided into regularblocks of size m=2 as shown in (4.7), (4.8). Then, computation (4.9) isperformed by the following schedule.
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4.2. TRIANGULAR SYSTEM SOLUTION 43Small blocks. If 1 � m � n0, compute (4.9) on the processor that holds thecurrent block.Large blocks. If n0 < m � n, compute b1 by recursion. Then compute A21 �b1by Algorithm 8. Compute c2+A21 � b1. Finally, compute A�22 � (c2+A21 � b1)by recursion. Each of these computations is performed with all processorsthat are available without matrix redistribution.Cost analysis. The values for W =Wp(n), H = Hp(n), S = Sp(n) can befound from the following recurrence relations:n0 < m � n m = n0Wq(m) = 2 �Wq=2(m=2) +O(m2=q) O(n20)Hq(m) = 2 �Hq=2(m=2) +O(m=q1=2) O(n0)Sq(m) = 2 � Sq(m=2) +O(1) O(1)as W = O(n2=p) H = O(n) S = O(p)The algorithm is oblivious, with slackness and granularity � =  =n=p. �The above analysis shows that the recursive algorithm for triangularsystem solution has the same BSP cost as the diamond dag algorithm. Theuse of block multiplication in the recursive algorithm does not lead to animprovement in communication cost.We now show that the asymptotic BSP cost of Algorithm 9 cannot bereduced by any computation of the substitution dag (Figure 4.3).Theorem 6. Any BSPRAM(p; g; l) computation of the triangular systemsubstitution dag with W = O(n2=p) requires (i) W = �(n2=p), (ii) H =
(n), (iii) S = 
(p).Proof. (i) Trivial.(ii) Let m0 = 0. Let q0 be the �rst processor computing the node v00. Letm1 be the �rst row of G not containing a node computed by processor q0 (ifevery row contains a node computed by q0, then m1 = n). De�ne G0 as asubdag of G consisting of rows i with 0 � i �m1, and F1 as a subdag of Gconsisting of columns j with m1 � j � n� 1. Let q1 be the �rst processorcomputing the node vm1m1 . Let m2 be the �rst row of F1 not containing anode computed by processor q1. De�ne G1 as a subdag of F1 consisting ofrows i with m1 � i � m2, and F2 as a subdag of F1 consisting of columnsj with m2 � j � n � 1. Repeat this process until some current mr+1 = n(and therefore Fr+1 is empty). We have obtained a sequence of subdagsG0; : : : ; Gr along the main diagonal of the dag G (see Figure 4.5). Thecomputation of each subdag can start only after each node in the previous
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44 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSPv00
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rrrrrrrrrFigure 4.5: Proof of Theorem 6, part (ii)subdag has been computed at least once. For the purpose of a lower bound,we will ignore all computation in a subdag after the highest-indexed nodehas been computed once. We may also assume that each computed value isused at least once.Consider a subdag Gs, 0 � s < r. For each k, ms � k < ms+1, there aretwo cases:� vkk is not computed by processor qs. By construction of Gs, thereis some j, ms � j < k, such that vkj is computed by processor qs.Therefore, processor qs must communicate the value computed in vkjto one of the processors computing vkk.� vkk is computed by processor qs. By construction of Gs, the nodevms+1k is not computed by processor qs. Therefore, processor qs mustcommunicate the value computed in vkk to the processor computingvms+1k.Thus, for each k, processor qs must send a distinct value, therefore thecommunication cost of computing Gs is at least ms+1 �ms.Now consider the subdag Gr. For each k, mr � k < n, there are threecases:� vkk is not computed by processor qr. Similarly to the �rst case above,processor qr must communicate the value computed in some vkj, mr �j < k, to one of the processors computing vkk.
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4.3. MATRIX MULTIPLICATION 45� vkk is computed by processor qr, but for some j, mr � j < k, the nodevkj is not computed by processor qr. In this case, the value computedin vkj must be communicated to processor qr in order to compute vkk.� vkj is computed by processor qr for all j, mr � j < k. Since W =O(n2=p), the total number of such values k cannot exceed n=p1=2.Thus, for each k, except at most n=p1=2 values, processor qs must send orreceive a distinct value, therefore the communication cost of computing Gris at least n�mr � n=p1=2.Since for every s, the computation of Gs must be completed before thecomputation of Gs+1 can start, the total communication cost is at least(m1 �m0) + (m2 �m1) + � � �+ (n�mr)� n=p1=2 = n� n=p1=2 = 
(n)(iii) The proof is a two-dimensional version of the proof for Theorem 5,part (iii). Nodes of the main diagonal vii, 0 � i < n, �rst computed ineach particular superstep, form a consecutive segment. We denote the sizesof these segments by ms, 0 � s < S, where P0�s<Sms = n. Since thecommunication within a superstep is not allowed, all nodes in the diagonalsquare block of size ms spanned by the segment s must be computed bythe processor that �rst computes the highest-indexed node of the block.The local computation cost of a block is therefore m2s. The total cost oflocal computation is bounded from below by the sum over all supersteps:P0�s<Sm2s. By Cauchy's inequality,n = X0�s<Sms = X0�s<S 1 �ms � S1=2 �� X0�s<Sm2s�1=2 � S1=2 �W 1=2Hence by assumption S � n2=W = 
(p). �Note that the recursive block substitution used in Algorithm 9 de�nesa dag di�erent from the ordinary substitution dag in Figure 4.3. Hence,Theorem 6 does not cover all standard methods of triangular system solutionin BSP, in particular the method used by Algorithm 9 itself. However, it maybe possible to extend the theorem to a more general class of dags, includingthe ordinary substitution and the recursive block substitution dag, as wellas the diamond dag. The standard algorithms for all the above dags havesimilar BSP costs, which suggests that these algorithms may be optimal fortriangular system solution under the new extended de�nition.4.3 Matrix multiplicationIn this section we describe a BSPRAM algorithm for one of the most commonproblems in scienti�c computation: dense matrix multiplication. We deal



www.manaraa.com

46 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSP
V

bi; j; kA bi; j
B

b
j; k

C
bi; k

Figure 4.6: Matrix multiplication dagwith the general problem of computing the matrix product A �B = C, whereA, B, C are n� n matrices over a semiring.We aim to parallelise the standard �(n3) method, asymptotically opti-mal for sequential matrix multiplication over a general semiring (see [HK71]).The method consists in straightforward computation of the family of bilinearforms C[i; k] = nXj=1A[i; j] �B[j; k] 1 � i; k � n (4.11)Following (4.11), we need to setC[i; k] 0 for i; k = 1; : : : ; n (4.12)and then computeV [i; j; k] A[i; j] �B[j; k] C[i; k] C[i; k] + V [i; j; k] (4.13)for all i; j; k, 1 � i; j; k � n. Computation (4.13) for di�erent triples i; j; kis independent (although it requires concurrent reading from A[i; j] andB[j; k], and concurrent writing to C[i; k]), and therefore can be performedin parallel.The BSPRAM algorithm implementing this method is derived from theBSP algorithm due to McColl and Valiant, described in [McC95, McC96c].The algorithm combines the idea of two-phase broadcast (see Section 2.2)with symmetric three-dimensional problem partitioning, previously used e.g.
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VA

B

CFigure 4.7: Matrix multiplication in BSPRAMin [ACS90] (see also [ABG+95] for further references and experimental re-sults). The algorithm works by a straightforward partitioning of the prob-lem dag. Array V is represented as a cube of volume n3 in integer three-dimensional space (see Figure 4.6). Arrays A;B;C are represented as pro-jections of the cube V onto the coordinate planes. Computation of the nodeV [i; j; k] requires the input from nodes A[i; j], B[j; k], and the output tonode C[i; k]. In order to provide a communication-e�cient BSP algorithm,the array V must be divided into p regular cubic blocks of size n=p1=3 (seeFigure 4.7). Such partitioning induces a partition of the matrices A, B, Cinto p2=3 regular square blocks of size n=p1=3,A = 0B@ A[[1; 1]] � � � A[[1; p1=3]]... . . . ...A[[p1=3; 1]] � � � A[[p1=3; p1=3]]1CA (4.14)and similarly for B, C (see Figure 4.7). Computation (4.12), (4.13) can beexpressed in terms of blocks asC[[i; k]] 0 for i; k = 1; : : : ; p1=3 (4.15)and thenV [[i; j; k]]  A[[i; j]] �B[[j; k]] C[[i; k]] C[[i; k]] + V [[i; j; k]] (4.16)for all i; j; k, 1 � i; j; k � p1=3. Each processor computes a block productV [[i; j; k]] = A[[i; j]] � B[[j; k]] sequentially by (4.12), (4.13). The algorithmis as follows.
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48 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSPAlgorithm 10. Matrix multiplication.Parameter: integer n � p1=3.Input: n� n matrices A, B over a semiring.Output: n� n matrix C = A �B.Description. The computation is performed on a CRCWBSPRAM(p; g; l).After the initialisation step (4.15), the computation proceeds in one super-step. Each processor performs the computation (4.16) for a particular triplei; j; k. In the input phase, the processor reads the blocksA[[i; j]] andB[[j; k]].Then it computes the product V [[i; j; k]] = A[[i; j]]�B[[j; k]] by (4.12), (4.13).The block V [[i; j; k]] is then written to C[[i; k]] in the main memory. Con-current writing is resolved by addition of the written blocks. The resultingmatrix C is the product of A and B.Cost analysis. The local computation, communication and synchronisa-tion costs areW = O(n3=p) H = O(n2=p2=3) S = O(1)The algorithm is oblivious, with slackness and granularity � =  = n2=p2=3.�We now prove that Algorithm 10 is an optimal parallel realisation ofthe standard matrix multiplication algorithm. The following theorem wassuggested by [Pat93].Theorem 7. Any BSPRAM(p; g; l) computation of the standard matrix mul-tiplication dag requires (i) W = 
(n3=p), (ii) H = 
(n2=p2=3), (iii) S =
(1).Proof. (i), (iii) Trivial.(ii) Since n3 nodes are computed by p processors, there is a processor thatcomputes at least n3=p nodes. We apply the discrete Loomis{Whitney in-equality (see Appendix A) to this set of nodes. Since there are at least n3=pnodes in the set, one of the three projections of the set must contain at leastn2=p2=3 nodes, therefore H = 
(n2=p2=3). �Algorithm 10 will serve us as a building block for more advanced matrixalgorithms developed in the following sections.4.4 Fast matrix multiplicationIn Section 4.3 we considered the problem of matrix multiplication over asemiring. As mentioned before, the standard �(n3) sequential algorithmis optimal for a general semiring. However, this is not so for commutative
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4.4. FAST MATRIX MULTIPLICATION 49rings with unit, which allow \fast" matrix multiplication algorithms. The�rst such algorithm was proposed by Strassen in his groundbreaking paper[Str69]. Since then, much work has been done on the complexity of matrixmultiplication over a commutative ring with unit. However, no lower boundasymptotically better than the trivial 
(n2) has been found, nor is thereany indication that the current O(n2:376) algorithm from [CW90] is close tooptimal.The natural computational model for matrix multiplication over a com-mutative ring with unit is the model of arithmetic circuits. It is not di�cultto see (see e.g. [HK71]) that without loss of generality, the model for matrixmultiplication can be restricted to a special class of circuits, called bilinear.Let A;B;C be N �N matrices over a commutative ring with unit. A bilin-ear circuit for the matrix product A � B = C computes a family of bilinearforms C[i; k] = RXr=1 (r)ik  NXi;j=1�(r)ij A[i; j]! NXj;k=1�(r)jk B[j; k]! (4.17)for 1 � i; k � N , where �(r)ij , �(r)jk , (r)ik are constant elements of the ring.We assume that all R terms in (4.17) are nontrivial, i.e. for each r, thereare some �(r)ij 6= 0, �(r)jk 6= 0 and (r)ik 6= 0. The number R is called themultiplicative complexity of the bilinear circuit.We represent the bilinear circuit (4.17) by a dag that we call a bilineardag. Each of the terms in (4.17) is represented by a node v(r), 1 � r � R.Computation of the node v(r) requires the input of A[i; j] for all i; j suchthat �(r)ij 6= 0, and of B[j; k] for all j; k such that �(r)jk 6= 0, as well as theoutput of C[i; k] for all i; k such that (r)ik 6= 0.Following (4.17), we need to setC[i; k] 0 for i; k = 1; : : : ; n (4.18)and then computex(r)  0; y(r)  0x(r)  x(r) + �(r)ij A[i; j] for i; j = 1; : : : ; Ny(r)  y(r) + �(r)jk B[j; k] for j; k = 1; : : : ; Nv(r)  x(r) � y(r)C[i; k] C[i; k] + (r)ik v(r) for i; k = 1; : : : ; N (4.19)
for all r, 1 � r � R. Computation (4.19) for di�erent values of r is inde-pendent (although it requires concurrent reading from A[i; j], B[j; k], andconcurrent writing to zik), therefore it can be performed in parallel.
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50 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSPA bilinear circuit based on the standard de�nition of matrix product(4.11) has multiplicative complexity R = N3. The �rst non-standard bilin-ear circuit for matrix multiplication with N = 2 and R = 7 was proposedin [Str69]. Paper [HK71] shows that for any arithmetic circuit solving thematrix multiplication problem over a commutative ring with unit in r non-scalar multiplications or divisions, there exists a bilinear circuit solving thisproblem with multiplicative complexity at most 2r.Any bilinear circuit for multiplying matrices of size N�N can be appliedto matrices of size n � N . The matrices A, B, C are divided into regularsquare blocks of size n=N ,A = 0B@A[[1; 1]] � � � A[[1; N ]]... . . . ...A[[N; 1]] � � � A[[N;N ]]1CA (4.20)and similarly for B, C. The computation (4.18), (4.19) can be expressed interms of blocks as C[[i; k]] 0 for i; k = 1; : : : ; N (4.21)and then X(r)  0;Y (r)  0X(r)  X(r) + a(r)ij A[[i; j]] for i; j = 1; : : : ; NY (r)  Y (r) + b(r)jk B[[j; k]] for j; k = 1; : : : ; NV (r)  X(r) � Y (r)C[[i; k]] C[[i; k]] + c(r)ik V (r) for i; k = 1; : : : ; N (4.22)
for all r, 1 � r � R. The procedure is applied recursively to compute theblock product V (r) = X(r) � Y (r). The resulting algorithm has sequentialcomplexity �(n!), where ! = logN R.A BSP version of the algorithm was proposed in [McC96b] (see also[KHSJ95, GvdG96, GHSJ96]). The recursion tree is computed in breadth-�rst order. The algorithm uses a data distribution that allows one to com-pute the linear forms in (4.22) in a constant number of supersteps. Eachof the matrices A, B, C is divided into regular square submatrices of sizen0 � n0, where n0 = n=p1=!. The matrices are distributed across the pro-cessors, so that the distributions of each of the above submatrices are evenand identical. Examples of a suitable distribution of A, B, C are the cyclicdistribution, or any block-cyclic distribution with square blocks of size atmost n0=p1=2.The described data distribution allows one to compute the linear formsin (4.22) without communication, until the current matrix size is reduced to
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4.4. FAST MATRIX MULTIPLICATION 51n0, and p independent matrix multiplication subproblems are generated. Atthis point the data are redistributed, so that each subproblem can be solvedsequentially. The algorithm is as follows:Algorithm 11. Fast matrix multiplication.Parameter: integer n � p1=!.Input: n� n matrices A, B over a commutative ring with unit.Output: n� n matrix C = A � B.Description. The computation is performed on a CRCWBSPRAM(p; g; l),and is de�ned by recursion on the size of the matrix. We denote the matrixsize at the current level of recursion bym, keeping n for the original size. Letn0 = n=p1=!. Value n0 is the threshold, at which the data are redistributedamong the processors.In each level of recursion, the matrix is divided into N2 regular squareblocks of size m=N as shown in (4.20). We perform the initialisation (4.21),and then the computation (4.22) by the following schedule.Small blocks. If 1 � m � n0, compute (4.22) sequentially on the processorwhere the data are held.Large blocks. If n0 < m � n, generate R multiplication subproblems by ex-ecuting the �rst three lines of (4.22) in parallel for all r. Solve the multipli-cation subproblems in parallel by R simultaneous recursive calls. Computethe result by executing the �nal line of (4.22) in parallel for all r. Thedata distribution ensures that the linear steps can be performed withoutcommunication.In the above description, the data are implicitly redistributed when thematrix size m passes the threshold n0. At this stage, the recursion tree isevaluated in breadth-�rst order. Therefore, the redistribution occurs onlytwice | �rst on the down-sweep, then on the up-sweep of the recursion tree.Cost analysis. The values for W = W (n), H = H(n), S = S(n) can befound from the following recurrence relations:n0 < m � n m = n0W (m) = R �W (m=N) O(n!0 =p)H(m) = R �H(m=N) O(n20=p)S(m) = S(m=N) O(1)as W = O(n!=p) H = O�n2=p2!�1� S = O(1)The algorithm is oblivious, with slackness � = n2=p2!�1 and granularity = n2=p2!�1+1. �
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52 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSPWe now prove that Algorithm 11 is an optimal parallel realisation ofthe fast matrix multiplication algorithm. In contrast with standard matrixmultiplication, we do not have any single dag underlying the computation.A statement that any BSP implementation of a bilinear circuit with param-eter ! would require H = 
(N2=p2!�1) is obviously invalid, since we mightbe able to emulate such a circuit by a circuit with !1 < !, by introducing\spurious" terms in (4.17) (e.g., duplicating other terms). The resulting cir-cuit could be computed in H = O(N2=p2!�11 ) = o(N2=p2!�1). Thus, a lowerbound on communication cost of a general bilinear matrix multiplicationcircuit is closely related to the lower bound on its computation cost, whichis beyond the reach of current complexity theory. Therefore, we restrict ouranalysis to circuits obtained by recursive application of a �xed basic circuit(4.17). The analysis can be easily extended to the case where di�erent lev-els of recursion are de�ned by di�erent basic circuits of the form (4.17), butall such circuits must have a �xed maximum size N and a �xed minimummultiplicative complexity R (and therefore a �xed minimum exponent !).The dag for recursive multiplication of matrices of size n based on thecircuit (4.17) consists of log n= logN levels. Each level is formed from dis-joint copies of the bilinear dag corresponding to the basic circuit. Algo-rithm 11 performs input/output at level 0, and data redistribution at levellog p= logR.We now prove the optimality of Algorithm 11.Theorem 8. Any BSPRAM(p; g; l) computation of the recursive matrix mul-tiplication dag based on (4.17) requires (i)W = 
(n!=p), (ii) H = 
(n2=p2!�1),(iii) S = 
(1).Proof. (i), (iii) Trivial.(ii) Induction on p and n.Induction base (p = 1, arbitrary n). Trivial.Inductive step (p ! R � p, n ! N � n). The outermost level of the dagconsists of n2 disjoint copies of the basic dag. The rest of the dag consistsof R disjoint copies of the fast matrix multiplication dag of size n. Foreach of these copies, the communication cost of Algorithm 11 is optimal.The outermost level is computed by Algorithm 11 without communication,therefore the overall communication is optimal. �It should be noted that for standard matrix multiplication (a basic dagwith N = 2, R = 8), Theorem 8 is not a replacement for the optimalityproof of Algorithm 10 (Theorem 7). This is because the computation of thestandard matrix multiplication dag (Figure 4.6) does not have to follow therecursive pattern of fast matrix multiplication. Therefore, the statement ofTheorem 7 is more general than Theorem 8 applied to the dag based onstandard 2� 2 matrix multiplication.
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4.5. GAUSSIAN ELIMINATION WITHOUT PIVOTING 534.5 Gaussian elimination without pivotingThis section and the next describe a BSPRAM approach to Gaussian elimi-nation, a method primarily used for direct solution of linear systems of equa-tions. More generally, Gaussian elimination and its variations are appliedto a broad spectrum of numerical, symbolic and combinatorial problems.In this section we consider the simplest form of Gaussian elimination,which does not involve the search for pivots. This basic form of eliminationis not guaranteed to produce correct result, or terminate at all, when per-formed on arbitrary matrices. However, it works well for matrices over someparticular domains, such as closed semirings, or for matrices of some partic-ular types, such as symmetric positive de�nite matrices over real numbers.We will consider pivoting in Sections 4.6 and 4.7.Gaussian elimination can be described in many ways. In this sectionwe consider it as LU decomposition of a real matrix. Chapter 5 presentsanother form of Gaussian elimination without pivoting, used for algebraicpath computation and matrix inversion.Let A be an n�n real diagonally dominant or symmetric positive de�nitematrix. The LU decomposition of A is A = L � U , where L is an n � nunit lower triangular, and R is an n � n upper triangular matrix. Thisdecomposition can be computed in sequential time O(n3) by plain Gaussianelimination, or in time O(n!) by block Gaussian elimination, using fastmatrix multiplication.The parallel complexity of Gaussian elimination has been extensivelystudied in many models of parallel computation. Paper [McC95] proposesto reduce the problem to the computation of a cube dag cube3(n). Thereduction is similar to the one described in Section 4.2 for triangular sys-tem solution. The BSP cost of the resulting computation is W = O(n3=p),H = O(n2=p1=2), S = O(p1=2) (see Section 3.3). The cube dag method isstraightforward for LU decomposition, and can be easily adapted to otherforms of Gaussian elimination, such as QR decomposition by Givens rota-tions.A lower communication cost for LU decomposition can be achieved byan alternative algorithm, based on recursive block Gauss{Jordan elimination(see e.g. [GPS90, DHS95]). This standard method was suggested as a meansof reducing the communication cost in [ACS90] (for the transitive closureproblem). Given a nonsingular matrix A, the algorithm produces the LUdecomposition A = L � U , together with the inverse matrices L�1 and U�1.The algorithm works by dividing the matrices A, L, U into square blocks ofsize n=2,A = L � U : �A11 A12A21 A22� = �L11 �L21 L22��U11 U12� U22� (4.23)where the dot � indicates a zero block. First we �nd the LU decomposition
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54 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSPof the block A11 = L11 � U11, along with the inverse blocks L�111 and U�111 ,by applying the algorithm recursively. Then we apply block Gauss{Jordanelimination to �nd the blocks L21, U12:L21  A21 � U�111 U12  L�111 �A12 (4.24)A second recursive application of the algorithm yields the LU decompositionA22 � L21 � U12 = L22 � U22, and the inverse blocks L�122 , U�122 . We completethe computation by takingL�1 = � L�111 ��L�122 � L21 � L�111 L�122 � U�1 = �U�111 �U�111 � U12 � U�122� U�122 �(4.25)We now describe the allocation of block LU decomposition tasks andblock multiplication tasks in (4.24){(4.25) to the BSPRAM processors. Ini-tially, all p processors are available to compute the LU decomposition. Thereis no substantial parallelism between block decomposition and block multi-plication tasks in (4.24){(4.25); we can only exploit the parallelism withinblock multiplication. Therefore, the recursion tree has to be computed indepth-�rst order. In each level of recursion, every block multiplication in(4.24){(4.25) is performed in parallel by all processors available at that level.Each block LU decomposition is also performed in parallel by all processorsavailable at that level, if the block size is large enough. When blocks becomesu�ciently small, block LU decomposition is computed sequentially by anarbitrarily chosen processor.The depth at which the algorithm switches from p-processor to single-processor computation can be varied. This variation allows us to trade o�the costs of communication and synchronisation in a certain range. In orderto account for this tradeo�, we introduce a real parameter �, controlling thedepth of parallel recursion. The algorithm is as follows.Algorithm 12. Gaussian elimination without pivoting .Parameters: integer n � p; real number �, �min = 1=2 � � � 2=3 = �max.Input: n � n real matrix A; we assume that A is diagonally dominant orsymmetric positive de�nite.Output: decomposition A = L �U , where L is an n�n unit lower triangularmatrix, and U is an n� n upper triangular matrix.Description. The computation is performed on a CRCWBSPRAM(p; g; l),and is de�ned by recursion on the size of the matrix. Denote the matrix sizeat the current level of recursion by m, keeping n for the original size. Letn0 = n=p�. Value n0 is the threshold, at which the algorithm switches fromparallel to sequential computation.
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4.5. GAUSSIAN ELIMINATION WITHOUT PIVOTING 55In each level of recursion, the matrix is divided into regular square blocksof size m=2 as shown in (4.23). Then, computation (4.24){(4.25) is per-formed by the following schedule.Small blocks. If 1 � m � n0, choose an arbitrary processor from all currentlyavailable, and compute (4.24){(4.25) on that processor.Large blocks. If n0 < m � n, compute L11, U11, L�111 , U�111 by recursion.Then compute L21, U12 and A22 � L21 � U12 by Algorithm 10. After that,compute L22, U22, L�122 , U�122 by recursion. Finally, compute �L�122 �L21 �L�111and �U�111 � U12 � U�122 by Algorithm 10. Each of these computations isperformed with all available processors. The result is the decomposition(4.23).Cost analysis. The values for W = W (n), H = H(n), S = S(n) can befound from the following recurrence relations:n0 < m � n m = n0W (m) = 2 �W (m=2) +O(m3=p) O(n30)H(m) = 2 �H(m=2) +O(m2=p2=3) O(n20)S(m) = 2 � S(m=2) +O(1) O(1)as W = O(n3=p) H = O(n2=p�) S = O(p�)The algorithm is oblivious, with slackness and granularity � =  =n2=p2=3. �For � = �min = 1=2, the cost of Algorithm 12 is W = O(n3=p),H = O(n2=p1=2), S = O(p1=2). This is asymptotically equal to the BSPcost of the cube dag method from [McC95]. For � = �max = 2=3, thecost of Algorithm 12 is W = O(n3=p), H = O(n2=p2=3), S = O(p2=3).In this case, the communication cost is as low as in matrix multiplication(Algorithm 10). This improvement in communication e�ciency is o�set bya reduction in synchronisation e�ciency. For large n, the communicationcost of Algorithm 12 dominates the synchronisation cost, and therefore thecommunication improvement should outweigh the loss of synchronisatione�ciency. This justi�es the use of Algorithm 12 with � = �max = 2=3.Smaller values of �, or the cube dag algorithm, should be considered whenthe problem is moderately sized.As in triangular system solution (Section 4.2), Gaussian eliminationwithout pivoting cannot be de�ned as a computation of any particular dag.The cube dag method, ordinary elimination and block recursive elimina-tion produce di�erent dags. A lower bound on synchronisation cost can beproved for a general class of dags, including the three subclasses above. Aproof, identical to the proof for the cube dag (Theorem 5, part (iii)), gives
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56 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSPthe bound S = 
(p1=2), provided that W = O(n3=p). A lower bound on thecommunication cost can be obtained by the standard method of reducingthe matrix multiplication problem to LU decomposition. For any n�n realmatrices A, B, the product A �B can be computed by LU decomposition ofa 2n� 2n matrix: �I BA I� = �I �A I��I B� I �A � B�Therefore, the lower bound H = 
(n2=p2=3) for standard matrix multi-plication (Theorem 7) holds also for standard Gaussian elimination with-out pivoting, which must be appropriately de�ned to exclude Strassen-typemethods.Fast matrix multiplication can be used instead of standard matrix mul-tiplication for computing block products. The modi�ed algorithm is as fol-lows.Algorithm 13. Fast Gaussian elimination without pivoting .Parameters: integer n � p3=!; real number �, �min = 1=(! � 1) � � �2=! = �max.Input: n � n real matrix A; we assume that A is diagonally dominant orsymmetric positive de�nite.Output: decomposition A = L �U , where L is an n�n unit lower triangularmatrix, and U is an n� n upper triangular matrix.Description. The computation is identical to Algorithm 12, except thatblock multiplication is performed by Algorithm 11, rather than Algorithm 10.As before, n0 = n=p� is the threshold between parallel and sequential com-putation.Cost analysis. The values for W = W (n), H = H(n), S = S(n) can befound from the following recurrence relations:n0 < m � n m = n0W (m) = 2 �W (m=2) +O(m!=p) O(n!0 )H(m) = 2 �H(m=2) +O�m2=p2!�1� O(n20)S(m) = 2 � S(m=2) +O(1) O(1)as W = O(n!=p) H = O(n2=p�) S = O(p�)The algorithm is oblivious, with slackness and granularity � =  =n2=p2!�1 . �As ! approaches the value of 2, the range of parameter � becomes tighter.If an O(n2) matrix multiplication algorithm is eventually discovered, thetradeo� between H and S will disappear.
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4.6. NESTED BLOCK PIVOTING AND GIVENS ROTATIONS 574.6 Nested block pivoting and Givens rotationsIn this section we extend the results of the previous section, obtaining ane�cient BSP algorithm for certain forms of Gaussian elimination with piv-oting.Let A be an n�n matrix over a �nite �eld. We assume that the inverseof a nonzero �eld element can be computed in time O(1). Plain Gaussianelimination without pivoting may fail to �nd the LU decomposition of A,because some diagonal elements may be zero initially, or become zero duringelimination. Block Gaussian elimination without pivoting may fail for asimilar reason, if some diagonal blocks are singular or become singular duringelimination. A particular feature of computation over a �nite �eld is thatany nonzero element, or any nonsingular block, can serve as a pivot. As weshow below, this allows us to use a restricted version of pivoting, proposedin [Sch73] (see also [BCS97, section 16.5]). We call this technique nestedblock pivoting, since its approach is to �nd a sequence of nested nonsingularblocks, or, if the original matrix is singular, a sequence of nested blocks ofmaximum possible rank. A similar approach applies to computation of theQR decomposition of a real matrix by Givens rotations.Another pivoting method suitable for block triangular decomposition hasbeen proposed in [BH74]. Since the approach of [BH74] requires a search forthe pivot along a matrix row, its BSP cost is higher than the cost of nestedblock pivoting.To describe nested block pivoting, we consider Gaussian elimination onrectangular matrices of a special form. Let � AV � be a 2n� n matrix over a�nite �eld. Here A is an arbitrary n� n matrix, and V an upper triangularn� n matrix. Matrices A, V may not have full rank. The problem consistsin �nding a full-rank 2n � 2n transformation matrix �D EF G �, and an n � nupper triangular matrix U , such that�D EF G��AV � = �U� � (4.26)This problem is closely related to the problem of transforming � AV � to rowechelon form (see [BCS97]).As in the previous section, the problem can be solved by the cube dagmethod, using the standard elimination scheme (see e.g. [Mod88, Ort88]).Alternatively, we can compute the decomposition (4.26) by a recursive pro-cedure. This procedure di�ers from the one described in Section 4.5 in thatwe cannot compute block inverses. Matrices �D EF G �, � AV �, � U� � are parti-tioned into regular square blocks of size n=2,0BB@D11 D12 E11 E12D21 D22 E21 E22F11 F12 G11 G12F21 F22 G21 G221CCA0BB@A11 A12A21 A22V11 V12� V221CCA = 0BB@U11 U12� U22� �� � 1CCA (4.27)
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58 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSPFirst the algorithm is applied recursively to n� n=2 matrix �A21V11 �. Takingthe decomposition �P11 P12P21 P22��A21V11� = �Y11� �we obtain 0BB@I � � �� P11 P12 �� P21 P22 �� � � I1CCA0BB@A11 A12A21 A22V11 V12� V221CCA = 0BB@A11 A12Y11 Y12� Y22� V221CCA (4.28)where �P11 P12P21 P22��A22V12� = �Y12Y22�In the next stage we apply the algorithm recursively to matrices �A11Y11 � and� Y22V22 �, obtaining0BB@Q11 Q12 � �Q21 Q22 � �� � Q33 Q34� � Q43 Q441CCA0BB@A11 A12Y11 Y12� Y22� V221CCA = 0BB@U11 U12� Z12� Z22� � 1CCA (4.29)Finally, we apply the algorithm recursively to matrix � Z12Z22 �, obtaining0BB@I � � �� R11 R12 �� R21 R22 �� � � I1CCA0BB@U11 U12� Z12� Z22� � 1CCA = 0BB@U11 U12� U22� �� � 1CCA (4.30)Matrix �D EF G � can now be computed as the product of the three transforma-tion matrices from (4.28){(4.30). The base of recursion is the eliminationon a 2 � 1 matrix. If both matrix elements are zero, the decompositionis trivial. Otherwise, an arbitrary nonzero element is used as a pivot. Ifthe other element is also nonzero, it is eliminated by subtracting the pivotmultiplied by an appropriate scaling factor.As opposed to Gaussian elimination without pivoting, the recursive pro-cedure (4.28){(4.30) is not e�cient when implemented in BSP, due to alarge number of recursive calls. However, we can improve the e�ciency bychanging the order in which low-level block operations are executed. Werepresent the block elimination order de�ned by (4.28){(4.30) schematicallyas 2 31 2
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4.6. NESTED BLOCK PIVOTING AND GIVENS ROTATIONS 59Here 1 denotes the elimination of V11, 2 denotes the elimination of Y11 andV22, and 3 denotes the elimination of Z22. Vertical bars j represent blockmultiplication. In this schematic representation, a block elimination canbe performed after the block immediately below has been eliminated, andblock multiplication immediately to the left has been performed. A blockmultiplication can be performed after all blocks immediately to the left havebeen eliminated.For 4� 4 matrices, the elimination scheme of the recursive algorithm is5 6 8 94 5 7 82 3 5 61 2 4 5Here the length of the vertical bars corresponds to the size of matricesbeing multiplied. Note that the elimination 4 in the bottom row has tobe computed after the matrix multiplication immediately on the left, andtherefore after elimination 3. However, elimination 4 in the left column canbe computed immediately after elimination 2, in parallel with elimination 3.In general, we can eliminate any block as soon as the result of multiplicationimmediately on its left is available. The optimised elimination scheme is4 5 7 83 4 6 72 3 5 61 2 4 5Similarly, the original, recursive elimination scheme for 8� 8 matrices is14 15 17 18 23 24 26 2713 14 16 17 22 23 25 2611 12 14 15 20 21 23 2410 11 13 14 19 20 22 235 6 8 9 14 15 17 184 5 7 8 13 14 16 172 3 5 6 11 12 14 151 2 4 5 10 11 13 14
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60 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSPand the optimised scheme is8 9 11 12 16 17 19 207 8 10 11 15 16 18 196 7 9 10 14 15 17 185 6 8 9 13 14 16 174 5 7 8 12 13 15 163 4 6 7 11 12 14 152 3 5 6 10 11 13 141 2 4 5 9 10 12 13This method can be generalised to arbitrary matrix sizes. Decomposition ofa 2n�n matrix can be computed by an r� r optimised elimination scheme,where each entry corresponds to a block of size n0 = n=r. We call suchblocks elementary. Elimination within an elementary block is performedsequentially by a single BSPRAM processor.We now describe the allocation of elementary block decomposition tasksand matrix multiplication tasks to the BSPRAM processors. The compu-tation alternates between decomposition of elementary blocks and parallelmultiplication of the resulting matrices. Each of these stages is implementedby a superstep. In each decomposition stage, at most one entry from everycolumn of the elimination scheme is computed. In each matrix multiplicationstage, at most one matrix multiplication from every column is performed.For any k, we allocate p=k processors to multiplication of matrices of sizen=k.The resulting algorithm is similar to Algorithm 12, in that a real pa-rameter � controls the depth at which block decomposition is performedsequentially. We use an optimised elimination scheme of size r = p�. Asbefore, variation of � results in a tradeo� between the communication andsynchronisation costs.Algorithm 14. Gaussian elimination with nested block pivoting .Parameters: integer n � p1+� for some constant � > 0; real number �,�min = 12 + log log p2 log p � � � 23 + log log plog p = �max.Input: n� n matrix A over a �nite �eld.Output: decomposition D � A = U , where D is a full-rank n � n matrix,and U is an n� n upper triangular matrix.Description. The computation is performed on a CRCWBSPRAM(p; g; l).We apply the optimised block elimination procedure to the matrix �A0 �. De-note the matrix size at the current level of recursion by m, keeping n for theoriginal size. Let n0 = n=p�. Value n0 is the size of elementary blocks.
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4.6. NESTED BLOCK PIVOTING AND GIVENS ROTATIONS 61We decompose the matrix using an optimised elimination scheme of sizer = p�, as described above. Decomposition of elementary blocks is computedsequentially. Matrix multiplication is performed by Algorithm 10.Cost analysis. The value for S = S(n) can be found from the followingrecurrence relation: n0 < m � n m = n0S(m) = 2 � S(m=2) +O(1) O(1)as S = O(p� � log p).Since r = p� � p, all elementary block decompositions occuring in thesame superstep can be performed in parallel. The total cost of elementaryblock decompositions isW0 = S0 � O(n30) = O(n3 � log p=p2�)H0 = S0 � O(n20) = O(n2 � log p=p�)S0 = O(p� � log p)The total computation and communication cost of all matrix multiplica-tions is dominated by the cost of the largest matrix multiplication. Indeed,in each matrix multiplication stage, we compute at most one matrix productof size n, at most two matrix products of size n=2, etc. In general, for anyk we compute at most k matrix products of size k. Every such productis computed on p=(2k) processors. Let n=K be the size of the largest ma-trix product occuring in a particular matrix multiplication superstep. Thecomputation cost of this superstep is at mostO�(n=K)3p=K t (n=(2K))3p=(2K) t (n=(4K))3p=(4K) t � � �� = O� n3K2 � p�and the synchronisation cost is at mostO� (n=K)2(p=K)2=3 t (n=2K)2(p=2K)2=3 t (n=4K)2(p=4K)2=3 t � � �� = O� n2K4=3 � p2=3�where t denotes the maximum operator. There are at most two superstepswith K = 1, at most four supersteps with K = 2, etc. In general, there areat most 2K supersteps for any particular K. Therefore, the total cost ofmatrix multiplications isW1 = O�n3p + 2 � n322 � p + 4 � n342 � p + � � �� = O(n3=p)H1 = O� n2p2=3 + 2 � n224=3 � p2=3 + 4 � n244=3 � p2=3 + � � �� = O(n2=p2=3)S1 = O(p� � log p)



www.manaraa.com

62 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSPSince W0 = O(W1), H1 = O(H0), the total BSP cost isW = O(n3=p) H = O(n2 � log p=p�) S = O(p� � log p)The algorithm is oblivious, with slackness and granularity � =  =n2=p2=3. �For � = �min, the cost of Algorithm 14 is W = O(n3=p), H = O�n2 �(log p)1=2=p1=2�, S = O�p1=2 � (log p)3=2�. This is slightly higher than theBSP cost of the cube dag method. For � = �max, the cost of Algorithm 14is W = O(n3=p), H = O(n2=p2=3), S = O�p2=3 � (log p)2�. In this case thecommunication cost is as low as in matrix multiplication (Algorithm 10) andGaussian elimination without pivoting (Algorithm 12). This improvementin communication e�ciency is o�set by a reduction in synchronisation e�-ciency. Considerations similar to the ones discussed in Section 4.5 apply tothe choice of a particular value of �.Since the cube dag method is slightly better than Algorithm 14 for � =�min, one might expect that a lower BSP cost may be achieved by a hybridalgorithm, performing elimination by an optimised scheme at the higherlevel, and decomposing elementary blocks by the cube dag algorithm at thelower level. This would be straightforward if Algorithm 14 were a purelyrecursive algorithm, similar to Algorithm 12. However, since Algorithm 14computes the elimination scheme in an optimised non-recursive order, theproblem of �nding an e�cient hybrid algorithm remains open.To reduce slightly the cost of local computation and communication, onecan use fast matrix multiplication instead of standard matrix multiplicationfor computing block products. In this case the recursion has to be deeper,therefore the synchronisation cost will slightly increase.Algorithm 14 can be used to compute the QR decomposition of a realmatrix. For a 2�1 matrix � av �, decomposition (4.26) is given by the Givensrotation � c s�s c��av� = �u��where c = a=(a2 + v2)1=2, s = v=(a2 + v2)1=2, u = (a2 + v2)1=2. Recur-sive equations (4.28){(4.30) and Algorithm 14 are then directly applied tocomputation of the QR decomposition of a real matrix by Givens rotations.4.7 Column pivoting and Householder reectionsIn Sections 4.5 and 4.6, we considered Gaussian elimination without piv-oting or with nested block pivoting, which is suitable for certain numericaland combinatorial computations on matrices. However, most numerical ma-trix problems require that in each step, the pivot is chosen globally within
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4.7. COLUMN PIVOTING AND HOUSEHOLDER REFLECTIONS 63a column (column pivoting), or even across the whole matrix (full pivot-ing). For an arbitrary nonsingular real matrix, only full pivoting guaranteesnumerical stability, and column pivoting is stable on the average. We alsoconsidered QR decomposition by Givens rotations, which is similar to nestedblock pivoting. An alternative method of QR decomposition, Householderreections, is similar to column pivoting.We consider Gaussian elimination with column pivoting on rectangularmatrices. Let A be an r � n real matrix, r � n. Matrix A may not havefull rank. The problem consists in �nding a full-rank r � r transformationmatrix D, and an r � n upper triangular matrix U , such that D �A = U .It is easy to obtain a BSPRAM algorithm for Gaussian elimination withcolumn pivoting, if we regard operations on columns (column eliminationand matrix-vector multiplication) as elementary operations, which are per-formed sequentially. In this case the data dependency between elementarytasks is similar to that of triangular system solution. Therefore, we can applyeither of the two methods described in Section 4.2: diamond dag algorithm,or recursive substitution. Since an elementary data unit is a column of sizer, and both elementary operations have sequential time complexity O(r),the local computation and communication costs of the resulting algorithmare equal to O(r) times the cost of the original triangular system algorithm.For square matrices (r = n) this yields W = O(n3=p), H = O(n2). Thesynchronisation cost S = O(p) remains unchanged.An alternative method is to combine the updates from several columneliminations, using matrix multiplication to perform these updates (see e.g.[Bre91]). Such an approach is often used in parallel numerical software,e.g. in the ScaLAPACK library (see [CDO+96]). Here we give a BSPRAMalgorithm based on this approach.As before, the algorithm can be described recursively. A similar recursiveprocedure for sequential computation has been introduced in [Tol97]. Wepartition matrices D, A, U into rectangular blocks�D11 D12D21 D22��A11 A12A21 A22� = �U11 U12� U22� (4.31)where blocks D11, A11, A12, U11, U12 are n=2 � n=2, and the sizes of otherblocks conform to the above. First, the algorithm is applied recursively tomatrix �A11A21 �. Taking the decomposition�P11 P12P21 P22��A11A21� = �U11� �we obtain �P11 P12P21 P22��A11 A12A21 A22� = �U11 U12� Y22� (4.32)
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64 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSPwhere �P11 P12P21 P22��A12A22� = �U12Y22�Then we apply the algorithm recursively to matrix Y22, obtaining�I �� Q22��U11 U12� Y22� = �U11 U12� U22� (4.33)Matrix D can now be computed as the product of the two transformationmatrices from (4.32){(4.33). The base of recursion is the elimination ona single column, which involves the search of the largest column elementas a pivot, and elimination of all other elements by subtracting the pivotmultiplied by an appropriate scaling factor.We now describe the allocation of block decomposition tasks and blockmultiplication tasks in (4.32){(4.33) to the BSPRAM processors. Initially,all p processors are available to compute the decomposition D � A = U .There is no substantial parallelism between block decomposition and blockmultiplication tasks in (4.32){(4.33); we can only exploit the parallelismwithin block multiplication. Therefore, the recursion tree has to be com-puted in depth-�rst order. In each level of recursion, every block multipli-cation in (4.32){(4.33) is performed in parallel by all processors available atthat level. Each block decomposition is also performed in parallel by all pro-cessors available at that level, if the block size is large enough. When blocksbecome su�ciently small, block decomposition is computed sequentially byan arbitrarily chosen processor.The resulting algorithm is as follows.Algorithm 15. Gaussian elimination with column pivoting .Parameter: integer n � p.Input: r � n real matrix A, r � n.Output: decomposition D �A = U , where D is a full-rank r�r matrix, andU is an r � n upper triangular matrix.Description. The computation is performed on a CRCWBSPRAM(p; g; l),and is de�ned by recursion on the size of the matrices. Denote the matrixwidth at the current level of recursion bym, keeping n for the original width.Let n0 = n=p. Value n0 is the threshold, at which the algorithm switchesfrom parallel to sequential computation.In each level of recursion, the matrices are divided as shown in (4.31).Then, computation (4.32){(4.33) is performed by the following schedule.Small blocks. If 1 � m � n0, choose an arbitrary processor from all currentlyavailable, and compute (4.32){(4.33) on that processor.
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4.7. COLUMN PIVOTING AND HOUSEHOLDER REFLECTIONS 65Large blocks. If n0 < m � n, compute U11, U12 by recursion. Then computeY22 by Algorithm 10. Finally, compute U22 by recursion. Each of thesecomputations is performed with all available processors. The result is thedecomposition (4.31).Cost analysis. The value for S = S(n) can be found from the followingrecurrence relation: n0 < m � n m = n0S(m) = 2 � S(m=2) +O(1) O(1)as S = O(p).The local computation costW and communication cost H are dominatedby the decomposition of elementary blocks: W = O(p) � O(r2n0), H =O(p) � O(rn0). For square matrices (r = n) we obtain:W = O(n3=p) H = O(n2) S = O(p)The algorithm is communication-oblivious, with slackness and granular-ity � =  = n2=p2. �The above analysis shows that the recursive algorithm for column pivot-ing has the same BSP cost as the column-based triangular system algorithm.Using block multiplication for matrix updates does not improve the asymp-totic communication cost of column pivoting. A straightforward extensionof the method is block column pivoting, where pivot search is performedlocally in a rectangular block of columns, instead of a single column, thusimproving numerical properties of the algorithm.In contrast with previous pivoting methods, using fast matrix multipli-cation in column pivoting will reduce slightly the cost of local computation,but the communication cost will remain unchanged. As before, the recur-sion will have to be deeper, therefore the synchronisation cost will slightlyincrease.Algorithm 15 can be used to compute the QR decomposition of a realmatrix by Householder reections. In this method, a column u is eliminatedby a symmetric orthogonal transformation matrix P = I�2v �vT , where v isa unit vector constructed from column u in linear time. Recursive equations(4.32){(4.33) and Algorithm 15 are then directly applied to computation ofthe QR decomposition of a real matrix by Householder reections.Finally, we consider Gaussian elimination with full pivoting. In thismethod, pivot search is done across the whole matrix on each eliminationstage. For real matrices, full pivoting guarantees numerical stability; how-ever, in practice it is used less frequently than column pivoting, due to ahigher computation cost.In contrast with matrix problems considered previously, there is noknown block method for Gaussian elimination with full pivoting. The only
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66 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSPviable approach to this problem seems to be �ne-grain. Consider Gaus-sian elimination with full pivoting on an n � n matrix. The matrix ispartitioned across the processors by regular square blocks of size n=p1=2.Each of n elimination stages is implemented by O(1) supersteps. Thecost of each stage is dominated by the cost of a rank-one matrix update:w = O(n2=p), h = O(n=p1=2). The total BSP cost of the algorithm is there-fore W = O(n) �w = O(n3=p), H = O(n) � h = O(n2=p1=2), S = O(n). Notethat the communication cost H is lower than that of Algorithm 15, but thesynchronisation cost S is much higher. The described �ne-grain algorithmcan be applied to Gaussian elimination with column pivoting, in which caseit presents a discontinuous communication-synchronisation tradeo� with Al-gorithm 15.
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Chapter 5Graph computationin the BSP model5.1 Fast Boolean matrix multiplicationGraph computation is a large and particularly well-studied area of combina-torial computation. It has a strong connection to matrix computation, sincea graph can be represented by its adjacency matrix. Many graph algorithmshave matrix analogues, and vice versa.In the simplest case of an unweighted graph, the adjacency matrix isBoolean. In this section, we consider the problem of multiplying two n� nBoolean matrices, using conjunction ^ and disjunction _ as multiplicationand addition respectively. The straightforward method is standard matrixmultiplication, of sequential complexity �(n3). There are also subcubicmethods, including Kronrod's algorithm (also known as Four Russians' al-gorithm, see e.g. [AHU76]), and a recent algorithm from [BKM95]. Thelowest known exponent is achieved by fast Strassen-type multiplication. Inthis method, the Boolean matrices are viewed as (0; 1)-matrices over the ringof integers modulo n+1 (see e.g. [Pat74, AHU76], [LD90, pages 537{538], or[CLR90, pages 747{748]). As shown in Section 4.4, the fast matrix multipli-cation algorithm has BSP cost W = O(n!=p), H = O(n2=p2=!), S = O(1).For matrices over a general semiring, these cost values are independentlyoptimal (Theorem 8). It is natural to ask whether the asymptotic com-munication cost H can be reduced by using properties speci�c to Booleanmatrices.In this section we give a positive answer to this question, describing analgorithm with communication cost H = O(n2=p). The proposed algorithmis not practical, since it works only for astronomically large matrices, andinvolves huge constant factors. However, the method is of theoretical im-portance, because it indicates that the lower bound H = 
(n2=p2=!), whichis easy to prove for a general semiring, cannot be extended to the Boolean67
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68 CHAPTER 5. GRAPH COMPUTATION IN BSPcase.We �rst give an intuitive explanation of the method. The main idea isto �nd the high-level structure of the two matrices and of their product.As soon as this basic structure is determined, the full structure can befound with little extra communication. In contrast with the standard andStrassen-type methods, the resulting algorithm is non-oblivious.Let us consider the standard �(n3) computation of the product A^B =C, where A, B, C are square Boolean matrices of size n. As in Section 4.3,we represent the n3 computed Boolean products by a cube of volume n3 ininteger three-dimensional space. The proposed algorithm performs commu-nication only on matrices containing few ones, or few zeros. A matrix withmones (or m zeros) can be communicated by sending the m indices of the ones(respectively, the zeros). If A contains at most n2=p ones, the multiplica-tion problem can be solved on a BSPRAM in W = O(n3=p), H = O(n2=p),S = O(1) by partitioning the cube into layers of size n=p�n�n, parallel tothe coordinate plane representing matrix A. Symmetrically, if B containsat most n2=p ones, the problem can be solved at the same cost by a similarpartitioning into layers of size n� n=p� n, parallel to the coordinate planerepresenting matrix B. If both A and B are dense, we partition the cubeinto layers of size n� n� n=p, parallel to the coordinate plane representingmatrix C. Assuming for the moment that A and B are random matrices,it is likely that the partial product computed by each of the layers containsat most n2=p zeros. Again, the problem can be solved in W = O(n3=p),H = O(n2=p), S = O(1). The remaining case is when A and B have rela-tively many ones, but C still has relatively many zeros. We argue that inthis case the triple A, B, C must have a special structure that allows usto decompose the computation into three matrix products corresponding tothe three easy cases above. Computation of this structure requires no priorknowledge of C. Its cost is polynomial in n (more precisely, of order n!),but exponential in p.The structure of a Boolean matrix product is best described in the lan-guage of graph theory. To expose the symmetry of the problem, we modifyit as follows. For a Boolean matrix X, let X denote the Boolean complementto the transpose of X, i.e. X[i; j] = X[j; i]. We replace C by C, and lookfor a C such that A ^B = C. Boolean matrices A, B, C de�ne a tripartitegraph, if we consider them as adjacency matrices of its three bipartite con-nection subgraphs. We will denote this tripartite graph by G = (A;B;C).Since A, B, C are square n�n matrices, the graph G is equitripartite, withthe size of each partite class equal to n.A simple undirected graph is called triangle-free if it does not contain atriangle (a cycle of length three). The graph G is triangle-free | existence ofa triangle in G would imply that for some i; j; k, A[i; j] = B[j; k] = C[k; i] =1, therefore A[i; j] ^B[j; k] = 1, but C[i; k] = C[k; i] = 1 = 0. Note that theproperty of a graph G to be triangle-free is symmetric: matrix C does not
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5.1. FAST BOOLEAN MATRIX MULTIPLICATION 69play any special role compared to A and B.The following simple result is not necessary for the derivation of ouralgorithm, and is given only to illustrate the connection between Booleanmatrix multiplication and triangle-free graphs. Let us call the factors A andB maximal, if changing a zero to a one in any position of A or B resultsin changing some zeros to ones in the product C (and therefore some onesto zeros in C). A triangle-free graph is called maximal if the addition ofany new edge creates a triangle. When we consider tripartite triangle-freegraphs, we call such a graph maximal if we cannot add any new edge sothat the resulting graph is still tripartite and triangle-free. Note that bythis de�nition, a maximal tripartite triangle-free graph may not be maximalas a general triangle-free graph. We have the following lemma.Lemma 2. Let A, B, C be arbitrary n�n Boolean matrices. The followingstatements are equivalent:(i) A, B are maximal matrices such that A ^B = C;(ii) A ^B = C, B ^ C = A, C ^A = B;(iii) G = (A;B;C) is a maximal equitripartite triangle-free graph.Proof. Straightforward application of the de�nitions. �Lemma 2 shows that in the product A ^ B = C, the matrices A, B,C are in a certain sense interchangeable: any matrix which is a Booleanproduct can also be characterised as a maximal Boolean factor. It also givesa characterisation of such matrices by maximal triangle-free graphs.One of the few references to maximal equitripartite triangle-free graphsappears in [Bol78]. In particular, [Bol78, pages 324{325] states the problemof �nding the minimum possible density of such a graph; it is easy to seefrom the discussion above that this problem is closely related to Booleanmatrix multiplication. It is then noted in [Bol78] that, as of the time ofwriting, the minimum density problem was \completely unresolved". Sincethen, however, a general approach to problems of this kind has been de-veloped. The basis of this approach is Szemer�edi's Regularity Lemma (seee.g. [KS96]). Here we apply this lemma directly to the Boolean matrix mul-tiplication problem; it might also be applicable to similar extremal graphproblems, including the minimum density problem.In the de�nitions and theorems below, we follow [KS96, Die97]. LetG = (V;E) be a simple undirected graph. Let v(G) = jV j, e(G) = jEj.For disjoint X;Y � V , let e(X;Y ) denote the number of edges betweenX and Y . We de�ne the density of the bipartite subgraph (X;Y ) asd(X;Y ) = e(X;Y )=(jXj � jY j). For disjoint A;B � V we call (A;B) an�-regular subgraph, if for every X � A, jXj > �jAj, and Y � B, jY j > �jBj,we have jd(X;Y )�d(A;B)j < �. We say that G has an (�; d)-partitioning of
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70 CHAPTER 5. GRAPH COMPUTATION IN BSPsize m, if V can be partitioned into m disjoint subsets of equal size, calledclusters, such that for any two clusters A, B, the bipartite subgraph (A;B)is either �-regular with density at least d, or empty. A cluster graph of an(�; d)-partitioning is a graph with m nodes corresponding to the clusters, inwhich two nodes are connected by an edge if and only if the two correspond-ing clusters form a non-empty bipartite subgraph. If G is an equitripartitegraph, then each cluster is a subset of one of the three parts, and the clustergraph is also equitripartite.We will not apply the de�nition of �-regularity directly. Instead, we willuse the following theorem (in a slightly more general form, paper [KS96]calls it the Key Lemma; a further generalisation is known as the Blow-UpLemma).Theorem 9 (Koml�os, Simonovits). Let d > � > 0. Let G be a graph withan (�; d)-partitioning, and let R be the cluster graph of this partitioning. LetH be a subgraph of R with maximum degree � > 0. If � � (d� �)�=(2+�),then G contains a subgraph isomorphic to H.Proof. See [KS96, Die97]. �Since we are interested in triangle-free graphs, we take H to be a triangle.By simplifying the condition on d and �, we obtain the following corollaryof Theorem 9: if d � 4=5, � � d2=4, and G is triangle-free, then its clustergraph R is also triangle-free.Our main tool is Szemer�edi's Regularity Lemma. Informally, it statesthat any graph can be transformed into a graph with an (�; d)-partitioningby removing a small number of nodes and edges. Its precise statement,slightly adapted from [KS96], is as follows.Theorem 10 (Szemer�edi). For every � > 0 there is an M = M(�) suchthat for any d, � � d � 1, an arbitrary graph G contains a subgraph G0 withan (�; d)-partitioning of size at most M , and e(G nG0) � (d+ �)�v(G)�2.Proof. See [KS96, Die97]. �Note that if e(G) = o�v(G)2�, the statement of Theorem 10 becomestrivial. Also note that for any d � �, an (�; d)-partitioning can be obtainedfrom an (�; �)-partitioning by simply excluding the �-regular subgraphs withdensities between � and d.For an equitripartite graph G of size 3n, where n � 2212��18 , paper[ADL+94] gives an algorithm which �nds the subgraphG0 in sequential timeO�2210��17 �n!�, where ! is the exponent of matrix multiplication (currently2:376 by [CW90]). The size of the resulting (�; d)-partitioning is at mostM = 2210��17 .We are now able to describe the proposed communication-e�cient algo-rithm for computing A^B = C, where A, B, C are Boolean matrices of size
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5.1. FAST BOOLEAN MATRIX MULTIPLICATION 71n. Let G = (A;B;C). We represent the n3 elementary Boolean products asa cube of volume n3 in the three-dimensional index space. The cubeG is par-titioned into p3 regular cubic blocks of size n=p. Each block is local to a par-ticular processor, and corresponds to an equitripartite triangle-free graph1G = (A;B;C), where A = A[[I; J ]], B = B[[J;K]] for some 1 � I; J;K � p,and C = A ^ B. We shall identify the cubic block with its graph G.Let us choose positive real numbers � and d, such that � � d2=4 (neces-sary as a condition of Theorem 9), and d + � � 2=p2 (necessary to ensurethat the communication cost H = O(n2=p) after the application of Theo-rem 10). We take d = 1=p2, � = d2=4 = 1=(4p4). By Theorem 10, we can�nd a large subgraph G0 � G with an (�; d)-partitioning of size 3m �M(�).Let G0 = (A0;B0;C0). Also let �G = G n G0, and �G = (�A;�B;�C).We have e(�G) � (d + �)n2=p2. Note that A = A0 _ �A, B = B0 _ �B,C = C0 _ �C, and C = A ^ B = C00 _ �C0, where C00 = A0 ^ B0, and�C0 = (�A ^ B) _ (A ^�B).The (�; d)-partitioning of the graph G0 is, up to a permutation of indices,a partitioning of G0 into m3 regular cubic subblocks. Let us denote a sub-block of G0 by G0[[i; j; k]] = (A0[[i; j]];B0[[j; k]];C0[[k; i]]), 0 � i; j; k < m.Let G[[i; j; k]] and �G[[i; j; k]] denote similar subblocks of G and �G.Consider an arbitrary subblock C0[[k; i]]. If C0[[k; i]] is a zero matrix,then C[[k; i]] = �C[[k; i]], and C[[k; i]] = �C[[k; i]]. If C0[[k; i]] is non-zero,then for any j, 0 � j < m, either A0[[i; j]] or B0[[j; k]] is a zero matrix byTheorem 9. Therefore, C00[[k; i]] is a zero matrix, and C[[k; i]] = �C0[[k; i]].The two cases (C0[[k; i]] zero or non-zero) can be distinguished by the clustergraph of G0 alone. The product A^B = C can therefore be found by selectingeach subblock of C from �C or �C0 = (�A^B)_(A^�B), where the choiceis governed by the cluster graph. The matrix C00 = A0 ^ B0 need not becomputed.In order to compute the (�; d)-partitioning for all p3 blocks of G at thecommunication cost H = O(n2=p), blocks must be grouped into p layers ofsize n� n� n=p, with p2 blocks in each layer. The computation of the twoBoolean matrix products in �C0 = (�A ^ B) _ (A ^�B) requires that thesame p3 cubic blocks are divided into p similar layers of sizes n=p � n � nand n� n=p� n, respectively.The number of nodes in the cluster graph of each block is O�2210��17� =O�2244p68�. Therefore, each cluster graph contains O�2245p68� edges. Eachprocessor computes cluster graphs for p2 blocks, therefore the total numberof cluster graph edges computed by a processor is at most O�2246p68�. Thecluster graphs must be exchanged between the processors. To obtain analgorithm with low communication cost, we require that this number of edgesis at most O(n2=p), therefore it is su�cient to assume that n = 
�2245p68�.The algorithm is as follows.1We use the sans-serif font for blocks, in order to reduce the number of subscripts.



www.manaraa.com

72 CHAPTER 5. GRAPH COMPUTATION IN BSPAlgorithm 16. Boolean matrix multiplication.Parameter: integer n = 
�2245p68�.Input: n� n Boolean matrices A, B.Output: n� n Boolean matrix C, such that A ^B = C.Description. The algorithm is performed on a CRCW BSPRAM(p; g; l).The Boolean matrix product A ^ B = C is represented as a cube of size nin integer three-dimensional space. This cube is partitioned into p3 regularcubic blocks.The algorithm proceeds in three stages. We use the notation of Theo-rem 10 and of the subsequent discussion.First stage. Matrix C is initialised with zeros. The cube is partitioned intolayers of size n� n� n=p, each containing p2 cubic blocks. Every processorpicks a layer, reads the necessary blocks of matrices A, B, and for eachcubic block G computes the graph G0 and the decompositions A = A0_�A,B = B0 _ �B, C = C0 _ �C. Then for each block G the processor writesback the matrices �A, �B, �C, and the cluster graph of G.Second stage. The Boolean products �A ^ B and A ^ �B are computedby partitioning the cube into layers of size n=p � n � n and n � n=p � n,respectively, each containing p2 cubic blocks. Then the Boolean sum �C0 =(�A ^ B) _ (A ^�B) is computed.Third stage. The blocks of matrix C are partitioned equally among the pro-cessors. Every processor reads the necessary cluster graphs, and then com-putes each block C by selecting its subblocks from �C or �C0, as directedby the cluster graph.The resulting matrix C is the Boolean matrix product of A and B.Cost analysis. The local computation, communication and synchronisa-tion costs areW = O�2246p68 � n!� H = O(n2=p) S = O(1)Hence, for any  > !, and n = 
�2246�(�!)�1 �p68�, the local computationcost is W = O(n=p), and still H = O(n2=p), S = O(1). Although thealgorithm is essentially non-oblivious, it is communication-oblivious. Itsslackness and granularity are � = n2=p,  = 1. �Algorithm 16 is asymptotically optimal in communication, since exam-ining the input already costs H = 
(n2=p). Moreover, its local computationcost is polynomial in n with exponent !. Therefore, for su�ciently largen, the algorithm improves on the asymptotic cost of any Strassen-type BSPalgorithm with exponent  , ! <  < 3. The algorithm is trivially optimalin synchronisation.
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5.2. ALGEBRAIC PATH COMPUTATION 735.2 Algebraic path computationIn this section we consider the problem of �nding the closure of a squarematrix over a semiring. This problem is also known as the algebraic pathproblem. It uni�es many seemingly unrelated computational problems, suchas graph connectivity, network reliability, regular language generation, net-work capacity. All these tasks can be viewed as instances of the algebraicpath problem for an appropriately chosen semiring. More information onapplications of the algebraic path problem can be found in [Car79, Zim81,GM84a, GM84b, Rot90].Let an n� n matrix A over a semiring represent a weighted graph withnodes 1; : : : ; n. The length of an edge i ! j is de�ned as the semiringelement A[i; j]. If the graph is not complete, we assume that non-edgeshave length zero. Let A� = I + A + A2 + � � � be the closure of matrix A(it is not guaranteed to exist in a general semiring). The distance betweennodes i, j is de�ned as the semiring element A�[i; j]. Note that in thisgeneral setting, the distance does not have to correspond to any particular\shortest" path in the graph. In the special case where the semiring is theset of all nonnegative real numbers with 1, and the operations min and +are used as semiring addition and multiplication respectively, lengths anddistances have their standard graph-theoretic meaning | in particular, 1plays the role of the zero, and the distances are realised by shortest paths.We will return to this special case in Section 5.4.In order to compute the closure of a square matrix over a general semir-ing, we use Gaussian elimination without pivoting. The method is similarto the one described in Section 4.5. In the absence of pivoting, Gaussianelimination over a general semiring is not guaranteed to terminate. Guaran-teed termination can be achieved by restricting the domain (e.g. consideringclosed semirings instead of arbitrary semirings), or by restricting the typeof the matrix, as we did in Section 4.5 for numerical matrices with certainspecial properties. In the case of numerical matrices, computation of thematrix closure corresponds to matrix inversion: A� = (I �A)�1.Let A be an n�nmatrix over a semiring. We assume that the closure of asemiring element can be computed in timeO(1), whenever this closure exists.Matrix closure A� can be computed by sequential Gaussian elimination intime �(n3), provided that the computation terminates. This method isasymptotically optimal for matrices over a general semiring, which can beshown by a standard reduction of the matrix multiplication problem.The BSP matrix closure computation is similar to LU decomposition (seeSection 4.5). The problem can be solved by the cube dag method, givingBSP cost W = O(n3=p), H = O(n2=p1=2), S = O(p1=2), or by recursiveblock Gauss{Jordan elimination. We repeat the description of block Gauss{Jordan elimination from Section 4.5, making the changes necessary to adaptit to the algebraic path problem.
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74 CHAPTER 5. GRAPH COMPUTATION IN BSPFor convenience we assume that the resulting matrix A� must replacethe original matrix A in the main memory of BSPRAM. The algorithmworks by dividing the matrix into square blocks of size n=2,A = �A11 A12A21 A22� (5.1)and then applying block Gauss{Jordan elimination:�A11  A�11 ��A22  �A�22�A12  �A11A12 ��A21  ��A22 �A21�A21  A21 �A11 ��A12  �A12 ��A22�A22  A22 +A21 �A11A12 ��A11  �A11 + �A21 ��A22 �A12 (5.2)after which every ��Aij overwrites Aij . The procedure can be applied recur-sively to �nd A�11 and �A�22. The resulting matrix isA� = �A�11 +A�11A12 �G� � A21A�11 A�11A12 �G�G� �A21A�11 G� � (5.3)where G = A22 + A21A�11A12. The computation terminates, if all takenclosures exist.We now describe the allocation of block closure tasks and block multipli-cation tasks in (5.2) to the BSPRAM processors. Initially, all p processorsare available to compute the closure A�. There is no substantial parallelismbetween block closure and block multiplication tasks in (5.2); we can onlyexploit the parallelism within block multiplication. Therefore, the recursiontree is computed in depth-�rst order. In each level of recursion, every blockmultiplication in (5.2) is performed in parallel by all processors available atthat level. Each block closure in (5.2) is also performed in parallel by allprocessors available at that level, if the block size is large enough. Whenblocks become su�ciently small, block closure is computed sequentially byan arbitrarily chosen processor.The depth at which the algorithm switches from p-processor to single-processor computation can be varied. This variation allows us to trade o�the costs of communication and synchronisation in a certain range. In orderto account for this tradeo�, we introduce a real parameter �, controlling thedepth of parallel recursion. The algorithm is as follows.Algorithm 17. Algebraic path computation.Parameters: integer n � p; real number �, �min = 1=2 � � � 2=3 = �max.Input: n� n matrix A over a semiring.Output: n� n matrix closure A� (assuming it exists), overwriting A.
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5.2. ALGEBRAIC PATH COMPUTATION 75Description. The computation is performed on a CRCWBSPRAM(p; g; l),and is de�ned by recursion on the size of the matrix. Denote the matrix sizeat the current level of recursion by m, keeping n for the original size. Letn0 = n=p�. Value n0 is the threshold, at which the algorithm switches fromparallel to sequential computation.In each level of recursion, the matrix is divided into regular square blocksof size m=2 as shown in (5.1). Then, computation (5.2) is performed by thefollowing schedule.Small blocks. If 1 � m � n0, choose an arbitrary processor from all currentlyavailable, and compute (5.2) on that processor.Large blocks. If n0 < m � n, compute �A11 by recursion. Then compute�A12, �A21, �A22 by Algorithm 10. After that, compute ��A22 by recursion.Finally, compute ��A21, ��A12, ��A11 by Algorithm 10. Each of these computationsis performed with all available processors. Overwrite every Aij by ��Aij,obtaining the matrix closure (5.3).Cost analysis. Recurrence relations, identical to the ones used for Algo-rithm 12, give the BSP costW = O(n3=p) H = O(n2=p�) S = O(p�)The algorithm is oblivious, with slackness and granularity � =  =n2=p2=3. �Similarly to Algorithm 12, Algorithm 17 with � = �max = 2=3 is bettersuited for large values of n, and � = �min = 1=2 may perform better for amoderate n.Lower bounds for the BSP cost of algebraic path computation are alsosimilar to the bounds given in Section 4.5. In particular, the problem ofcomputing the n�n matrix product A �B can be reduced to algebraic pathcomputation by considering the closure of a 3n�3n lower triangular matrix0@ IB I� A I1A� = 0@ IB IA �B A I1A (5.4)(see e.g. [Pat74, CLR90]). Therefore, the lower bound H = 
(n2=p2=3) forstandard matrix multiplication (Theorem 7) holds also for matrix closureover a general semiring.If the ground semiring is a commutative ring with unit, fast matrixmultiplication can be used instead of standard matrix multiplication forcomputing block products. The modi�ed algorithm is as follows.Algorithm 18. Fast algebraic path computation.Parameters: integer n � p3=!; real number �, �min = 1=(! � 1) � � �2=! = �max.
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76 CHAPTER 5. GRAPH COMPUTATION IN BSPInput: n� n matrix A over a commutative ring with unit.Output: n� n matrix closure A� (assuming it exists), overwriting A.Description. The computation is identical to Algorithm 17, except thatblock multiplication is performed by Algorithm 11, rather than Algorithm 10.Cost analysis. Recurrence relations, identical to the ones used for Algo-rithm 13, give the BSP costW = O(n!=p) H = O(n2=p�) S = O(p�)The algorithm is oblivious, with slackness and granularity � =  =n2=p2!�1 . �If A is a real symmetric positive de�nite matrix, then the algorithm forcomputing the inverse A�1 can be obtained by transforming equations (5.2)into the form�A11  A�111 ��A22  �A�122�A12  �A11A12 ��A21  � ��A22 �A21�A21  A21 �A11 ��A12  � �A12 ��A22�A22  A22 �A21 �A11A12 ��A11  �A11 + �A21 ��A22 �A12 (5.5)after which every ��Aij overwrites Aij . It is easy to see that matrices A11,�A22 are symmetric positive de�nite, therefore the procedure can be appliedrecursively to �nd A�111 and �A�122 . The resulting matrix isA�1 = �A�111 +A�111 A12 �G�1 �A21A�111 �A�111 A12 �G�1�G�1 �A21A�111 G�1 � (5.6)where G = A22 � A21A�111 A12. Thus, matrix inversion can be performed bya standard algorithm similar to Algorithms 12, 17, or by a fast algorithmsimilar to Algorithms 13, 18.5.3 Algebraic paths in acyclic graphsIn the previous section we considered the algebraic path problem on anarbitrary directed graph. It is interesting to analyse the same problem inthe special case where the underlying graph is acyclic.A directed acyclic graph can be topologically sorted by an all-pairsshortest paths algorithm with BSP cost W = O(n3=p), H = O(n2=p2=3),S = O(log p) (see Section 5.4). From now on, we assume that the inputgraph is topologically sorted, so that the edges are directed from higher-indexed to lower-indexed nodes. Such a graph is represented by a lowertriangular matrix.
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5.3. ALGEBRAIC PATHS IN ACYCLIC GRAPHS 77Let A be an n � n lower triangular matrix over a semiring. As before,we solve the problem of computing the matrix closure A� by recursive blockGauss{Jordan elimination. We assume that the resulting lower triangu-lar matrix A� must replace the original matrix A in the main memory ofBSPRAM. The algorithm works by dividing the matrix into square blocksof size n=2, A = �A11A21 A22� (5.7)and then applying block Gauss{Jordan elimination:�A11  A�11�A22  A�22�A21  �A22A21 �A11 (5.8)after which every �Aij overwrites Aij . The procedure can be applied recur-sively to �nd A�11 and A�22. The resulting matrix isA� = � A�11A�22A21A�11 A�22� (5.9)The computation terminates, if all taken closures exist.An important di�erence from the case of arbitrary matrices is that theblock closures A�11 and A�22 in (5.8) can be computed independently andsimultaneously. In order to exploit this feature, we partition the set of avail-able processors into two subsets of equal size, each computing one of thetwo block closures. This partitioning takes place in every level of recursion,until p independent tasks are created. The recursion tree is computed inbreadth-�rst order. Block multiplication in (5.8) is performed in parallelby all processors available at the current level of recursion. When blocksbecome su�ciently small, block closure is computed sequentially by a pro-cessor chosen arbitrarily from the available processors. The algorithm is asfollows.Algorithm 19. Algebraic path computation in an acyclic graph.Parameter: integer n � p2=3.Input: n� n lower triangular matrix A over a semiring.Output: n� n matrix closure A� (assuming it exists), overwriting A.Description. The computation is performed on a CRCWBSPRAM(p; g; l),and is de�ned by recursion on the size of the matrix. Denote the matrixsize at the current level of recursion by m, keeping n for the original size.Let n0 = n=p1=3. Value n0 is the threshold, at which the algorithm switchesfrom parallel to sequential computation.
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78 CHAPTER 5. GRAPH COMPUTATION IN BSPIn each step of recursion, the matrix is divided into regular square blocksof size m=2 as shown in (5.7). Then, computation (5.8) is performed by thefollowing schedule.Small blocks. If 1 � m � n0, choose an arbitrary processor from the cur-rently available, and compute (5.8) on this processor.Large blocks. If n0 < m � n, partition the set of currently available proces-sors into two equal subsets. Compute �A11 (respectively, �A22) by recursion,using the processors of the �rst (respectively, the second) subset. Then com-pute �A21 by Algorithm 10, using all processors available at the current levelof recursion. Overwrite every Aij by �Aij, obtaining the matrix closure (5.9).Cost analysis. The values for W =Wp(n), H = Hp(n), S = Sp(n) can befound from the following recurrence relations:n0 < m � n m = n0Wq(m) = Wq=2(m=2) +O(m3=q) O(n30)Hq(m) = Hq=2(m=2) +O�m2=q2=3� O(n20)Sq(m) = Sq=2(m=2) +O(1) O(1)as W = O(n3=p) H = O�n2=p2=3� S = O(log p)The algorithm is oblivious, with slackness and granularity � =  =n2=p2=3. �From the analysis of Algorithm 19, the algebraic path problem on anacyclic graph appears to be asymptotically easier than on a general graph.The asymptotic communication and local computation costs of Algorithm 19are the same as for matrix multiplication, and the synchronisation cost ishigher than that of matrix multiplication by only a factor of log p. Thereis no communication-synchronisation tradeo�. The proof of a lower boundon communication cost H = 
(n2=p2=3) is identical to the proof for generalgraphs, given in Section 5.2.If A is a matrix over a commutative ring with unit, fast matrix multipli-cation can be used instead of standard matrix multiplication for computingblock products. The modi�ed algorithm is as follows.Algorithm 20. Fast algebraic path computation in an acyclic graph.Parameter: integer n � p2=!.Input: n�n lower triangular matrix A over a commutative ring with unit.Output: n� n matrix closure A� (assuming it exists), overwriting A.Description. The computation is identical to Algorithm 19, except thatblock multiplication is performed by Algorithm 11, rather than Algorithm 10.
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5.4. ALL-PAIRS SHORTEST PATHS COMPUTATION 79Cost analysis. The values for W =Wp(n), H = Hp(n), S = Sp(n) can befound from the following recurrence relations:n0 < m � n m = n0Wq(m) = Wq=2(m=2) +O(m!=q) O(n!0 )Hq(m) = Hq=2(m=2) +O�m2=q2!�1� O(n20)Sq(m) = Sq=2(m=2) +O(1) O(1)as W = O(n!=p) H = O�n2=p2!�1� S = O(log p)The algorithm is oblivious, with slackness and granularity � =  =n2=p2!�1 . �If A is a real nonsingular lower triangular matrix, then the algorithm forcomputing the inverse A�1 can be obtained by transforming equations (5.8)into the form �A11  A�111�A22  A�122�A21  � �A22A21 �A11 (5.10)after which every �Aij overwrites Aij . Matrices A11, A22 are nonsingularlower triangular, therefore the procedure can be be applied recursively to�nd A�111 and A�122 . The resulting matrix isA�1 = � A�111�A�122 A21A�111 A�122 � (5.11)Thus, triangular matrix inversion can be performed by an algorithm similarto Algorithms 19 or 20.5.4 All-pairs shortest paths computationIn Section 5.2 we considered the algebraic path problem over an arbitrarysemiring. Here we deal with a special case where the semiring is the set ofreal numbers with 1, and the numerical operations min and + are used assemiring addition and multiplication respectively. Since the min operationis idempotent, for all i, j there is a path from i to j of length A�[i; j] |this is one of the shortest paths from i to j. Most algorithms for matrixclosure in the (min;+) semiring can be extended to compute the shortestpaths between all pairs of nodes, as well as the distances. Therefore, inthis section we use the term all-pairs shortest paths problem as a synonymfor the matrix closure problem in the (min;+) semiring. Symbols + and�, when applied to path lengths, will always denote the semiring addition
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80 CHAPTER 5. GRAPH COMPUTATION IN BSPand multiplication, i.e. numerical min and +. Initially, we consider the casewhere all edge lengths are nonnegative. We then extend our method togeneral lengths.The technique of Gauss{Jordan elimination, considered in Section 5.2,can be applied to the all-pairs shortest paths problem. In this context,Gauss{Jordan elimination is commonly known as the Floyd{Warshall al-gorithm (see e.g. [CLR90]). Its block recursive version, identical to Algo-rithm 17, solves the problem with BSP cost W = O(n3=p), H = O(n2=p�),S = O(p�), for an arbitrary �, 1=2 � � � 2=3.Alternatively, the problem with nonnegative lengths can be solved byDijkstra's algorithm ([Dij59], see also [CLR90]). This greedy algorithm �ndsall shortest paths from a �xed source in order of increasing length. Thesequential time complexity of Dijkstra's algorithm is �(n2). To computethe shortest paths between all pairs of nodes in parallel, one can applyDijkstra's algorithm independently to each node as a source (this approach issuggested e.g. in [Joh77, Fos95]). The resulting algorithm has BSP costW =O(n3=p), H = O(n2), S = O(1). It thus has a higher communication cost,but a lower synchronisation cost, than the Floyd{Warshall algorithm. Thistradeo� motivates us to look for an improved BSP algorithm, that wouldsolve the all-pairs shortest paths problem e�ciently both in communicationand synchronisation.In order to design such an algorithm, we use the principle of path dou-bling. No shortest path may contain more than n edges, therefore An = A�.Matrix An can be obtained by repeated squaring in log n matrix multiplica-tions. Therefore, the local computation cost of computing An by repeatedsquaring is W = ��(n3 logn)=p�. A re�ned version of path doubling wasproposed in [AGM97, Tak98]. When run in parallel, this method allows oneto compute the matrix An = A� with local computation cost W = O(n3=p).Compared to the Floyd{Warshall algorithm, the new method does not im-prove on the synchronisation cost by itself; however, an improvement canbe achieved by combining the new method with Dijkstra's algorithm.We assume for simplicity that all edges and paths in the graph havedi�erent lengths, therefore all shortest paths are unique. We use the termpath size for the number of edges in a path. The main idea of the methodis to perform path doubling, keeping track not only of path lengths, butalso of path sizes. We assume that lengths and sizes are kept in a singledata structure, called the path matrix. In such a matrix X, each entryX[i; j] is either 1, or corresponds to a simple path from i to j. Additionand multiplication of path matrices are de�ned in the natural way. For aninteger k, letX(k) denote the matrix of all paths inX of size exactly k. Moreprecisely, X(k)[i; j] = X[i; j] if path X[i; j] has size k, and X(k)[i; j] = 1otherwise. Let X(k1; : : : ; ks) = X(k1) + � � � + X(ks) (remembering that +denotes numerical min). Note that X(0) = I and X = X(0; : : : ;m) =I +X(1) + � � �+X(m), where m is the maximum path size in X.
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5.4. ALL-PAIRS SHORTEST PATHS COMPUTATION 81For path matrices X, Y , we write X � Y , if X[i; j] � Y [i; j] for all i; j(ignoring path sizes). We call an entry X[i; j] trivial, if i = j, or X[i; j] =1.We call X and Y disjoint, if either X[i; j], or Y [i; j] is trivial for all i; j.For an integer k, matrix Ak contains all shortest paths of size at mostk (and maybe some other paths). Suppose that we have computed Ak forsome k, 1 � k < n. Our next goal is to compute all shortest paths of sizeat most 3k=2. Decompose the path matrix Ak into a disjoint semiring sumAk = I+Ak(1)+ � � �+Ak(k). Consider the matrices Ak(k=2+1); : : : ; Ak(k).The total number of nontrivial entries in all these matrices is at most n2(since the matrices are disjoint), and the average number of nontrivial entriesper matrix is at most 2n2=k. Therefore, for some l, k=2 < l � k, matrixAk(l) contains at most 2n2=k nontrivial entries.Consider any shortest path of size in the range l+1; : : : ; 3k=2. This pathconsists of an initial subpath of size l, and a �nal subpath of size at mostk. Therefore, the matrix product Ak(0; l) �Ak contains all shortest paths ofsize at most 3k=2: Ak(0; l) � Ak � A3k=2. Since Ak(0; l) has at most 2n2=knontrivial entries, computation of Ak(0; l) �Ak requires not more than 2n3=ksemiring multiplications.The above product involves a sparse matrix Ak(0; l), and a dense matrixAk. To compute Ak(0; l) �Ak e�ciently in parallel, we need to partition theproblem into p sparse-by-dense matrix multiplication subproblems, whereall the sparse arguments have an approximately equal number of nontrivialentries. This can be done by �rst partitioning the set of rows in Ak(0; l)into p1=3=k1=3 equal subsets, such that each subset contains at most 2n2k2=3�p1=3nontrivial entries. This partitioning de�nes, up to a permutation of rows,a decomposition of the matrix into p1=3=k1=3 equal horizontal strips. Eachstrip de�nes an n�k1=3p1=3 � n � n sparse-by-dense matrix multiplication sub-problem.Consider one of the above subproblems. Partition the set of columns inthe strip into p1=3=k1=3 equal subsets, such that each subset contains at most4n2k1=3�p2=3 nontrivial entries. This partitioning de�nes, up to a permutationof columns, a decomposition of the strip into equal square blocks. Eachblock de�nes an n�k1=3p1=3 � n�k1=3p1=3 � n sparse-by-dense matrix multiplicationsubproblem. By partitioning the set of columns of the second argument ofthis subproblem into p1=3 � k2=3 equal subsets, we obtain p1=3 � k2=3 sparse-by-dense matrix multiplication subproblems of size n�k1=3p1=3 � n�k1=3p1=3 � np1=3�k2=3 .The total number of resulting sparse-by-dense matrix multiplication sub-problems is p. The sparse argument of each subproblem contains at most4n2k1=3�p2=3 nontrivial entries. The partitioning can be computed by a greedyalgorithm, the BSP cost of which is negligible. The BSP cost of com-puting the matrix product Ak(0; l) � Ak is therefore W = O�n3=(k � p)�,H = O�n2=(k1=3 � p2=3)�, S = O(1).
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82 CHAPTER 5. GRAPH COMPUTATION IN BSPThe path doubling process stops after at most log3=2 p rounds, when thematrix Ap (or some matrix � Ap, which is only better) has been computed.For some q, 1 � q � p, matrix Ap(q) contains at most n2=p nontrivial en-tries. Therefore, it can be broadcast to every processor with communicationcost H = O(n2=p). Each processor receives the matrix Ap(q), picks n=pnodes, and computes all shortests paths originating in these nodes by n=pindependent runs of Dijkstra's algorithm. The result of this computationacross all processors is the matrix closure Ap(q)�. Matrix Ap(q)� containsall shortest paths of sizes that are multiples of q (and maybe some otherpaths).Any shortest path in A� consists of an initial subpath of size that is amultiple of q, and a �nal subpath of size at most q � p. Therefore, allshortest paths for the original matrix A can be computed as the matrixproduct Ap(q)� � Ap = A�.The cost of the resulting algorithm is W = O(n3=p), H = O(n2=p2=3),S = O(log p). We can further reduce the synchronisation cost by terminatingthe path doubling phase after fewer than log3=2 p steps. For 1 � r � p2=3, wecan �nd a q such that the matrix Ar(q) has at most n2=r nontrivial entries,therefore the communication cost of applying Dijkstra's algorithm to �ndAr(q)� is H = O(n2=r).The resulting algorithm is as follows.Algorithm 21. All-pairs shortest paths (nonnegative case).Parameters: integer n � p; integer r, 1 � r � p2=3.Input: n�n matrix A over the (min;+) semiring of nonnegative real num-bers with 1.Output: n� n matrix closure A�.Description. The computation is performed on a CRCWBSPRAM(p; g; l),and proceeds in three stages.First stage. Compute Ar and Ar(q), 0 < q � r, by at most log3=2 r roundsof path doubling. Matrix Ar(q) contains at most n2=r nontrivial entries.Second stage. Broadcast Ar(q) and compute the closure Ar(q)� by n inde-pendent runs of Dijkstra's algorithm, n=p runs per processor.Third stage. Compute the product Ar(q)� �Ar = A�.Cost analysis. The local computation and communication costs of the�rst stage are dominated by the cost of its �rst round: W = O(n3=p) andH = O(n2=p2=3). The synchronisation cost of the �rst stage is S = O(log r).The cost of the second stage is W = O(n3=p), H = O(n2=r), S = O(1).The cost of the third stage is W = O(n3=p), H = O(n2=p2=3), S = O(1).
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5.4. ALL-PAIRS SHORTEST PATHS COMPUTATION 83The local computation, communication and synchronisation costs of thewhole algorithm areW = O(n3=p) H = O(n2=r) S = O(1 + log r)The algorithm is communication-oblivious, with slackness � = n2=r andgranularity  = 1. �The two extremes of Algorithm 21 are the communication-e�cient al-gorithm with r = p2=3, W = O(n3=p), H = O(n2=p2=3), S = O(log p), andthe multiple Dijkstra algorithm with r = 1, W = O(n3=p), H = O(n2),S = O(1).Algorithm 21 allows the following variation. Instead of computing theclosureAp(q)�, represent matrix Ap(p) as a productAp(p) = Ap(q)�Ap(p�q),0 � q < p=2. For some q, the disjoint sum Ap(q)+Ap(p�q) contains at most2n2=p nontrivial entries. Therefore, the second stage of the algorithm can bereplaced by broadcasting the matrices Ap(q) and Ap(p�q) (or, equivalently,their disjoint sum), recovering the product Ap(q) � Ap(p � q) = Ap(p), andcomputing the closure Ap(p)�. In the third stage, it remains to compute theproduct Ap(p)� �Ap = A�.We now extend Algorithm 21 to graphs where edge lengths may be neg-ative. Formally, the problem is de�ned as �nding the closure A� of a matrixA over the (min;+) semiring of all real numbers with1. The closure is de-�ned, if and only if the graph does not contain a cycle of negative length. Wecannot use our original method to solve this more general problem, becauseDijkstra's algorithm does not work on graphs with negative edge lengths.However, we can get round this di�culty by replacing Dijkstra's algorithmwith an extra stage of sequential path doubling.The extended algorithm has three stages. In the �rst stage, we computethe matrix Ap2 by 2 log3=2 p steps of parallel path doubling. Let Ap2((p)) =Ap2(p; 2p; : : : ; p2), and Ap2((p) � q) = Ap2(p � q; 2p � q; : : : ; p2 � q). Werepresent matrix Ap2((p)) as a product Ap2((p)) = Ap2(q) � Ap2((p) � q),0 � q < p=2. For some q, the disjoint sum Ap2(q) +Ap2((p)� q) contains atmost 2n2=p nontrivial entries. In the second stage, we collect matrices Ap2(q)and Ap2((p) � q) in a single processor, and recover their product Ap2((p)).Now the closure Ap2((p))� = Ap2(p)� can be computed by sequential pathdoubling. In the third stage, it remains to compute the product Ap2(p)� �Ap2 = A�.In contrast with the nonnegative case, early termination of the parallelpath doubling phase would increase not only the communication cost, butalso the local computation cost. Therefore, we do not consider this option.The resulting algorithm is as follows.Algorithm 22. All-pairs shortest paths.Parameter: integer n � p.
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84 CHAPTER 5. GRAPH COMPUTATION IN BSPInput: n�n matrix A over the (min;+) semiring of real numbers with1.Output: n� n matrix closure A�.Description. The computation is performed on a CRCWBSPRAM(p; g; l),and proceeds in three stages.First stage. Compute Ap2 and Ap2((p)) by at most 2 log3=2 p rounds of par-allel path doubling. Represent Ap2((p)) as Ap2((p)) = Ap2(q) �Ap2((p)� q),0 � q � p=2. The disjoint sum Ap2(q)+Ap2((p)� q) contains at most 2n2=pnontrivial entries.Second stage. Collect Ap2(q)+Ap2((p)�q) in a single processor, and recoverAp2((p)) = Ap2(q) � Ap2((p) � q). Compute the closure Ap2((p))� = Ap2(p)�by sequential path doubling.Third stage. Compute the product Ap2(p)� � Ap2 = A�.Cost analysis. The local computation and communication costs of the�rst stage are dominated by the cost of its �rst round: W = O(n3=p) andH = O(n2=p2=3). The synchronisation cost of the �rst stage is S = O(log p).The local computation cost of the second stage is dominated by thecost of its �rst round, equal to W = O(n3=p). The communication andsynchronisation costs of the second stage are H = O(n2=p), S = O(1).The cost of the third stage isW = O(n3=p), H = O(n2=p2=3), S = O(1).The local computation, communication and synchronisation costs of thewhole algorithm areW = O(n3=p) H = O(n2=p2=3) S = O(log p)The algorithm is communication-oblivious, with slackness � = n2=p andgranularity  = 1. �The described method is applicable not only to the (min;+) semiring,but also to any semiring where addition is idempotent. The examples arethe (_;^) semiring for the problem of transitive closure, the (max;min)semiring for paths of maximum capacity, or the (max; �) semiring for paths ofmaximum reliability. Note that in the case of transitive closure computationby Algorithm 21, Boolean matrix multiplication (Algorithm 16) cannot beused instead of general matrix multiplication (Algorithm 10), since the pathdoubling process involves the multiplication of path matrices, rather thanordinary Boolean matrices. It is not clear if an extension of Algorithm 16can be obtained for path matrix multiplication.5.5 Single-source shortest paths computationIn the previous section, we presented deterministic BSP algorithms for �nd-ing all-pairs shortest paths in a dense weighted graph. In this section, we
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5.5. SINGLE-SOURCE SHORTEST PATHS COMPUTATION 85deal with the problem of �nding all shortest paths from a single distin-guished node, called the source. The considered graph may be sparse, andsome edge lengths may be negative.We develop an e�cient BSP algorithm for the single-source shortestpaths problem, by using a simple randomisation method proposed in [UY91].First, we choose a random subset of s � n sample nodes, which also includesthe source node. If s � n� for a constant � > 0, then an arbitrary subsetof n logn=s nodes contains a sample node with high probability (see e.g.[UY91]). For every sample node, we then compute all outgoing shortestpaths of size at most n log n=s. Consider any shortest path beginning atthe source. With high probability, this path is divided by the sample nodesinto shortest subpaths of size at most n logn=s. These subpaths are amongthe shortest paths just computed. Let the sample graph be de�ned as thegraph on the sample nodes, with edges corresponding to the shortest pathsbetween the samples. The next step of the algorithm is to compute all-pairsshortest paths in the sample graph. After that, one matrix multiplicationis su�cient to complete the computation of single-source shortest paths inthe original graph.We assume that the input is a sparse graph with m edges, n � m � n2.The high-probability argument requires thatm = 
(n1+�) for some constant� > 0. As before, the graph is weighted and directed, with arbitrary realedge lengths. We keep using the notation + and �, when applied to edgelengths, for numerical min and + respectively.The single-source shortest path problem in a graph corresponds to asystem of linear equations in the (min;+) semiring. The standard Bellman{Ford single-source shortest paths algorithm (see e.g. [CLR90]) can be viewedas solving this linear system by Jacobi iteration. An iteration step hassequential cost O(m), and consists in multiplying the system matrix by avector. A total of n steps may be required, therefore the sequential cost ofthe Bellman{Ford algorithm is O(mn).The randomised shortest paths algorithm needs to compute shortestpaths from s di�erent sources, up to path size n logn=s. This corresponds ton logn=s steps of Jacobi iteration, performed independently on s initial vec-tors. Alternatively, the computation can be viewed as a sequence of n logn=ssteps, each of which is a multiplication of a sparse n� n matrix by a densen� s matrix. The sequential cost of this computation is O(mn logn).Let A be the graph matrix. Without loss of generality, we assume thatthe source node has index 1. Single-source shortest paths can therefore becomputed by the following simple, synchronisation-e�cient randomised BSPalgorithm.Algorithm 23. Randomised single-source shortest paths in sparse graph.Parameter: integer n � p2.
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86 CHAPTER 5. GRAPH COMPUTATION IN BSPInput: n�n matrix A over the (min;+) semiring of real numbers with1.Matrix A contains m = 
(n1+�) nontrivial entries, for a constant � > 0.Output: n-vector (0;1; : : : ;1) �A�.Description. Let s = min(m=n; n1=2). The computation is performed ona CRCW BSPRAM(p; g; l), and proceeds in three stages.First stage. Broadcast matrix A. Select s random sample nodes, includingthe source node. Without loss of generality, let the sample nodes haveindices 1; : : : ; s. Let J denote an n� s matrix, such that J [i; j] = 0 if i = j,and J [i; j] = 1 otherwise. Compute s � n matrix B = JT � An log n=s bys independent runs of the Bellman{Ford algorithm. Compute s� s matrixC = B � J = JT �An log n=s � J .Second stage. Collect matrix C in a single processor, and compute its closureC� by an e�cient sequential algorithm. Let the s-vector c be the �rst rowof C�: c = (0;1; : : : ;1) � C�.Third stage. Broadcast c, and compute the n-vector c �B. With high prob-ability, this vector is equal to the �rst row of A�: c �B = (0;1; : : : ;1) �A�.Cost analysis. The communication cost of broadcast in the �rst stage isH = O(m). The local computation cost of the �rst stage is determined bythe cost of the Bellman{Ford algorithm: W = O(mn logn=p).The communication cost of collecting the sample matrix C in the secondstage is H = O(s2). The local computation cost of �nding the closure C�is W = O(s3). Both costs are dominated by the respective costs of the �rststage.The communication cost of broadcast in the third stage is H = O(s).The local computation cost of the third stage is W = O(sn=p). Again, bothcosts are dominated by the respective costs of the �rst stage.The local computation, communication and synchronisation costs of thewhole algorithm areW = O(mn logn=p) H = O(m) S = O(1)The algorithm is communication-oblivious, with slackness and granularity� =  = s=p. �The local computation cost of Algorithm 23 di�ers from the cost of thesequential Bellman{Ford algorithm by a factor of log n. It is not knownwhether the single-source shortest path problem can be solved in parallelwith local computation cost O(mn=p).The communication cost of Algorithm 23 can be reduced by partitioningmatrix A in the �rst stage into regular square blocks, and performing thecomputation of matrix B in n logn=s supersteps. We do not consider thisalternative �ne-grain algorithm, because of its high synchronisation cost.
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5.6. MINIMUM SPANNING TREE COMPUTATION 875.6 Minimum spanning tree computationFinally, we consider the problem of �nding the minimum spanning tree(MST) in a weighted undirected graph. As observed in [MP88], the MSTproblem can be viewed as an instance of the algebraic path problem. Theproblem input is a symmetric matrix over the semiring of all real numberswith 1, where the operations min and max are used as semiring additionand multiplication respectively. Due to the symmetry of the matrix, andthe special structure of the (min;max) semiring, the MST can be found insequential time O(n2), in contrast with the �(n3) complexity of standardalgorithms for the general algebraic path problem.Standard sequential algorithms for MST computation employ greedytechniques, such as the algorithms by Kruskal and Prim (see e.g. [Chr75,AHU83, CLR90]). These greedy algorithms �nd the MST of a graph withn nodes and m edges in time O(m log n). Many algorithms with a lowerasymptotic complexity have been proposed, but it is not known if an O(m)deterministic algorithm exists. However, if the input edges are sorted byweight, the greedy algorithms work in time O(m). Paper [KKT95] describesa randomised O(m) MST algorithm.A standard PRAM solution to the problem is provided by another greedyalgorithm, attributed to Bor _uvka and Sollin (see e.g. [J�aJ92]). The algorithmworks by selecting for each node the shortest incident edge. The resultingset of edges is a subforest of the MST. Connected components of this forestare regarded as nodes of a new graph, where the weight of an edge betweentwo nodes is de�ned as the minimum weight of an edge between the twocorresponding components. The procedure is repeated until only one nodeis left. The MST of the original graph is the union of the forests constructedin all rounds. The number of nodes in the graph is reduced by at least afactor of two in each round, therefore O(log n) rounds are su�cient for adense graph. The contraction of tree components in each round can take upto O(log n) steps, therefore the total PRAM complexity of the algorithm isO(log2 n). Paper [JM95] presents a more e�cient PRAM algorithm, withcomplexity O(log3=2 n).The BSPRAM model suggests an alternative, coarse-grain approach tothe problem. We assume that initially the edges of the graph are stored inthe main memory. We also assume that all edge weights are distinct (oth-erwise we can break the ties by attaching a unique identi�er to each edge).A useful theorem from [MP88] relates the MST problem to the problem of�nding shortest paths in a graph.Theorem 11 (Maggs, Plotkin). A path between two nodes in the mini-mum spanning tree is the lightest path between these nodes, where path weightis de�ned as the weight of the heaviest edge in the path.Proof. See [MP88]. �
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88 CHAPTER 5. GRAPH COMPUTATION IN BSPTo �nd the MST, consider a partitioning of the m edges into p arbitrarysubsets. Each subset de�nes a subgraph of the original graph. We computethe MST of each subgraph separately by an e�cient sequential algorithm,either deterministic or randomised. Any edge that does not belong to oneof the subgraph MSTs does not belong to the MST of the whole graph.Indeed, such an edge cannot be the lightest path between its ends, sincethere is a lighter path in the MST of the subgraph that contains that edge.Therefore, the MST of the whole graph is contained in the union of subgraphMSTs, and can be found as the MST of this union. The resulting BSPRAMalgorithm is as follows.Algorithm 24. Minimum spanning tree.Parameters: integer n � p2 (respectively, n � p2 log p); integer m � n � p2(respectively, m � n �p2 log p, m � n logn) for the randomised (respectively,deterministic) version of the algorithm.Input: undirected weighted graph G with n nodes and m edges.Output: minimum spanning tree of G.Description. The computation is performed on an EREWBSPRAM(p; g; l).Edges of G are partitioned across the processors, m=p edges per processor.After that, the computation is performed in message-passing mode and pro-ceeds in two stages.First stage. Each processor computes the MST of the subgraph of G de�nedby the m=p local edges, and then sorts the edges of the obtained local MST.Second stage. The local MSTs are collected in a single processor. This pro-cessor merges the received edges into a sorted sequence, and then computesthe MST of their union, obtaining the MST of G.Cost analysis. The communication cost of the initial distribution is H =O(m=p). The (expected) local computation cost of computing subgraphMSTs in the �rst stage is O(m log n=p) for the deterministic version, andO(m=p) for the randomised version. The cost of sorting the edges of thelocal MSTs is O(n log n=p). The size of each local MST is O(n). Therefore,the communication cost of collecting the local MSTs is O(n � p). The localcomputation cost of merging the local MSTs in the second stage is O(n �p log p). The assumptions on the size of n and m imply that the BSP cost ofthe second stage is dominated by the cost of the �rst stage. Thus, the localcomputation cost of the deterministic algorithm is Wdet = O(m log n=p),and the expected local computation cost of the randomised algorithm isWexp = O(m=p). The communication and synchronisation costs of bothalgorithms are H = O(m=p), S = O(1). The algorithm is communication-oblivious. Its slackness and granularity are � =  = m=p. �
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5.6. MINIMUM SPANNING TREE COMPUTATION 89Papers [ADJ+98, DG98] present more complex BSP algorithms, thatare e�cient for smaller input sizes. For dense graphs, these algorithms aresimilar to Algorithm 24.
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Chapter 6ConclusionsIn this thesis we have developed a systematic approach to the design andanalysis of bulk-synchronous parallel algorithms, based on the BSPRAMmodel. This model enhances the standard BSP model with shared memory,while retaining the concept of data locality. It was shown that the BSPand the BSPRAM models are related by e�cient simulation for a broadrange of algorithms. We have identi�ed some characteristic algorithm prop-erties that enable such simulation: communication-obliviousness, slackness,granularity. The BSPRAM approach encourages natural speci�cation of theproblems: the input and output data are assumed to be stored in the mainmemory, no assumptions on data distribution are necessary. The use ofshared memory simpli�es the design and analysis of BSP algorithms.We have presented BSPRAM algorithms for popular computational prob-lems from three large domains: combinatorial computation, computation ondense matrices, and graph computation. The BSP costs of the presented al-gorithms are summarised in Tables 6.1{6.4 (with constant factors omitted).It is assumed that the input size is su�ciently large with respect to thenumber of processors. Some of the algorithms exhibit a tradeo� betweencommunication and synchronisation costs. Constant factors involved in theasymptotic costs of the presented algorithms are fairly small, with the ex-ception of fast Boolean matrix multiplication, where these factors are astro-Problem W H SComplete tree n=p n=p 1Buttery dag n log n=p n=p 1Cube dag n3=p n2=p1=2 p1=2Sorting n log n=p n=p 1List contraction n=p n=p log pTree contraction n=p n=p log pTable 6.1: Summary of combinatorial algorithms90
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91Problem W H SMatrix-vector multiplication n2=p n=p1=2 1Triangular system solution n2=p n pMatrix multiplication n3=p n2=p2=3 1Gaussian elimination n3=pno pivoting, minH � n2=p2=3 p2=3no pivoting, minS � n2=p1=2 p1=2block pivoting, minH � n2=p2=3 p2=3 � (log p)2block pivoting, minS � n2 � (log p)1=2p1=2 p1=2 � (log p)3=2column pivoting � n2 pTable 6.2: Summary of matrix algorithmsProblem W H SMatrix multiplication n!=p n2=p2=! 1Gaussian elimination n!=pno pivoting, minH � n2=p2=! p2=!no pivoting, minS � n2=p1=2 p1=2Boolean matrix mult n!=pnormal � n2=p2=! 1minH, any W n! � exp(p68) n2=p 1Table 6.3: Summary of fast matrix algorithmsProblem W H SAlgebraic paths n3=pgeneral, minH � n2=p2=3 p2=3general, minS � n2=p1=2 p1=2acyclic � n2=p2=3 log pAll-pairs shortest paths n3=pgeneral � n2=p2=3 log pnonnegative, minH � n2=p2=3 log pnonnegative, minS � n2 1Single-source shortest paths mn logn=pgeneral, randomised � m 1Minimum spanning tree m=prandomised � m=p 1deterministic m log n=p m=p 1Table 6.4: Summary of graph algorithms
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92 CHAPTER 6. CONCLUSIONSnomically large. The question remains whether a practical communication-e�cient algorithm for Boolean matrix multiplication exists.Asymptotic optimality has been proven for some of the presented algo-rithms. For other algorithms, we have discussed possible methods of obtain-ing a lower bound. Lower bounds on communication and synchronisationwere treated separately. A possible direction of future research consists inobtaining lower bounds on communication-synchronisation tradeo�s. Otherresearch directions include a numerical stability study for the dense matrixalgorithms obtained in Chapter 4, and an extension of these algorithms tosparse matrices.Our presentation highlights certain algorithmic concepts that are im-portant in developing future BSP languages and programming tools. Apartfrom communication-synchronisation tradeo�s, these concepts include block-ing and recursion. Providing their e�cient support both on the local and theinter-processor level is a challenging task for future BSP software develop-ment. Implementation of the BSPRAM model and experimental evaluationof the algorithms presented in this thesis would be useful �rst steps in thisdirection.
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Appendix AThe Loomis{Whitneyinequality and itsgeneralisationsThe optimality of several BSP matrix algorithms presented in Chapter 4rests on the discrete Loomis{Whitney inequality. The latter is closely relatedto Cauchy's inequality and the classical isoperimetric inequality. In thisappendix we propose a new simple proof and a generalisation of the discreteLoomis{Whitney inequality.One of the most common inequalities in analysis is the classical Cauchyinequality (see e.g. [Mit70]): for two �nite sequences ai; bi � 0, 1 � i � n,nXi=1 a1=2i b1=2i �  nXi=1 ai!1=2 nXi=1 bi!1=2 (A.1)A standard generalisation of (A.1) for exponents � and �, � + � = 1, isH�older's inequality. It can be further generalised by takingm � 2 sequences,and exponents �1; : : : ; �m, such that �1 + � � �+ �m = 1.Another important result is the Loomis{Whitney inequality, relating thevolume of a compact set in Rm, m � 2, to the areas of its orthogonalprojections onto r-dimensional coordinate subspaces, 1 � r � m. It wasintroduced in [LW49] (see also [Had57, BZ88]) to simplify the proof of theclassical isoperimetric \volume-to-surface" inequality. The discrete analogof the Loomis{Whitney inequality relates the size of a �nite set of points inZm to the sizes of its orthogonal projections onto r-dimensional coordinatesubspaces.For simplicity, let us take m = 3, r = 2. Let A be a �nite set of points inZ3, and let A1, A2, A3 be the orthogonal projections of A onto the coordinateplanes. The discrete Loomis{Whitney inequality states thatjAj � jA1j1=2 � jA2j1=2 � jA3j1=2 (A.2)94
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95where j�j denotes the cardinality of a �nite set.Inequalities (A.1) and (A.2) seem at �rst to be unrelated. However,they are special cases of the following general inequality: for �nite sequencesaij; bjk; cik � 0, 1 � i; j; k � n,nXi;j;k=1a1=2ij b1=2jk c1=2ik �  nXi;j=1 aij!1=2 nXj;k=1 bjk!1=2 nXi;k=1 cik!1=2 (A.3)The Cauchy inequality (A.1) follows from (A.3) when aij = aj for all i,bjk = bj for all k, and cki = 1 for all i; k. The discrete Loomis{Whitneyinequality (A.2) follows from (A.3) when aij ; bjk; cki 2 f0; 1g.Inequality (A.3) can be rewritten in matrix form as tr(ABC) � kAk �kBk � kCk, where A = �a1=2ij �, B = �b1=2jk �, C = �c1=2ki �, and k�k is the Frobe-nius (Euclidean) matrix norm: kXk = �Pij x2ij�1=2, where X = (xij). Inthis form, the inequality can be proved straightforwardly from the proper-ties of the Frobenius norm, and of the Frobenius inner product hX;Y i =tr(XY T ) � kXk�kY k. We have tr(ABC) � kAk�k(BC)T k � kAk�kBk�kCk.We now consider the multidimensional versions of the above inequalities.Let m � 3, 1 � r � m. For m � 1 sequences as[i] � 0, 1 � s � m � 1,1 � i � n, and exponents �1 = � � � = �m�1 = 1m�1 , the generalised H�olderinequality is nXi=1 m�1Ys=1 as[i] 1m�1 � m�1Ys=1 nXi=1 as[i]! 1m�1 : (A.4)For a �nite set A � Zm, the discrete Loomis{Whitney inequality isjAj �Q1�s1<���<sr�m jAs1:::sr jmr�1(mr )�1 ; (A.5)where As1:::sr , 1 � s1 < � � � < sr � m, are the projections of A onto �mr �coordinate subspaces of dimension r.Inequalities (A.4) and (A.5) are special cases of the following more gen-eral inequality.Theorem 12. For any as1:::sr [is1 ; : : : ; isr ] � 0, 1 � s1 < � � � < sr � m,1 � i1; : : : ; im � n,P1�i1;:::;im�n Q1�s1<���<sr�m as1:::sr [is1 ; : : : ; isr ]mr�1(mr )�1 �Q1�s1<���<sr�m �P1�is1 ;:::;isr�n as1:::sr [is1 ; : : : ; isr ]�mr�1(mr )�1 : (A.6)Inequality (A.3) corresponds to (A.6) withm = 3, r = 2, a12[i1; i2] = aij,a23[i2; i3] = bjk, a13[i1; i3] = cik.



www.manaraa.com

96APPENDIX A. THE LOOMIS{WHITNEY INEQUALITY AND ITS GENERALISATIONSProof. The matrix proof of inequality (A.3) does not seem to generalise toa proof of (A.6) (although the inequality for tr(ABC) can be extended toan arbitrary number of matrices). To avoid dealing with the cumbersomenotation of (A.6), we give an alternative, elementary proof of (A.3), thatcan be easily generalised to a proof of (A.6).We apply Cauchy's inequality (A.1) to the left-hand side of (A.3) threetimes. The subexpressions to which Cauchy's inequality is applied are de-noted below by square brackets. We haveXijk a1=2ij b1=2jk c1=2ik =Xik c1=2ik �Xj a1=2ij b1=2jk � �Xik c1=2ik �Xj aij�1=2�Xj bjk�1=2 =Xk �Xj bjk�1=2"Xi c1=2ik �Xj aij�1=2# �Xk �Xj bjk�1=2�Xi cik�1=2�Xij aij�1=2 =�Xij aij�1=2"Xk �Xj bjk�1=2�Xi cik�1=2# �� nXij aij�1=2� nXjk bjk�1=2� nXik cik�1=2A generalisation for arbitrary r and m is straightforward. �Inequality (A.6) degenerates to an identity when r = 1 or r = m. Thegeneralised symmetric H�older inequality (A.4) follows from (A.6) when r =m� 1, a1:::k�1;k+1:::m�1[i1; : : : ; ik�1; ik+1; : : : ; im�1] = ak[im�1]for 1 � k < m � 1, and a1:::m�2[i1; : : : ; im�2] = 1. The discrete Loomis{Whitney inequality (A.5) follows from (A.6) when as1:::sr [is1 ; : : : ; isr ] 2 f0; 1g.
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