The Design and Analysis of
Bulk-Synchronous Parallel Algorithms

Alexandre Tiskin

Christ Church
Trinity Term 1998

Qualifying dissertation submitted
in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
at the University of Oxford

Programming Research Group
Oxford University Computing Laboratory

www.manharaa.com

www.manharaa.com

o AJLb

To the memory of my father

www.manharaa.com

www.manharaa.com

o AJLb

Abstract

The model of bulk-synchronous parallel (BSP) computation is an emerg-
ing paradigm of general-purpose parallel computing. This thesis presents a
systematic approach to the design and analysis of BSP algorithms. We in-
troduce an extension of the BSP model, called BSPRAM, which reconciles
shared-memory style programming with efficient exploitation of data local-
ity. The BSPRAM model can be optimally simulated by a BSP computer
for a broad range of algorithms possessing certain characteristic proper-
ties: obliviousness, slackness, granularity. We use BSPRAM to design BSP
algorithms for problems from three large, partially overlapping domains:
combinatorial computation, dense matrix computation, graph computation.
Some of the presented algorithms are adapted from known BSP algorithms
(butterfly dag computation, cube dag computation, matrix multiplication).
Other algorithms are obtained by application of established non-BSP tech-
niques (sorting, randomised list contraction, Gaussian elimination without
pivoting and with column pivoting, algebraic path computation), or use orig-
inal techniques specific to the BSP model (deterministic list contraction,
Gaussian elimination with nested block pivoting, communication-efficient
multiplication of Boolean matrices, synchronisation-efficient shortest paths
computation). The asymptotic BSP cost of each algorithm is established,
along with its BSPRAM characteristics. We conclude by outlining some
directions for future research.

www.manharaa.com

Contents

1 Introduction 4
2 BSP computation 6
2.1 Historical background 000 6
22 TheBSPmodel. 9
2.3 The BSPRAM model 12
3 Combinatorial computation in BSP 19
3.1 Complete binary tree computation 19
3.2 Butterfly dag computation 0000 22
3.3 Cube dag computation oL 24
3.4 Sorting. 27
3.5 List contraction 0. 30
3.6 Tree contraction 33
4 Dense matrix computation in BSP 37
4.1 Matrix-vector multiplication 37
4.2 Triangular system solution 39
4.3 Matrix multiplication. 0L 45
4.4 Fast matrix multiplication, 48
4.5 Gaussian elimination without pivoting 53
4.6 Nested block pivoting and Givens rotations 57
4.7 Column pivoting and Householder reflections 62
5 Graph computation in BSP 67
5.1 Fast Boolean matrix multiplication 67
5.2 Algebraic path computation 73
5.3 Algebraic paths in acyclic graphs 76
5.4 All-pairs shortest paths computation 79
5.5 Single-source shortest paths computation 84
5.6 Minimum spanning tree computation 87
6 Conclusions 90
2

www.manharaa.com

CONTENTS 3

7 Acknowledgements 93

A The Loomis—Whitney inequality and its generalisations 94

www.manharaa.com

Chapter 1

Introduction

The model of bulk-synchronous parallel (BSP) computation (see [Val90a,
McC93, McC95, McC96¢, McC98]) provides a simple and practical frame-
work for general-purpose parallel computing. Its main goal is to support
the creation of architecture-independent and scalable parallel software. The
key features of BSP are the treatment of the communication medium as an
abstract fully connected network, and explicit and independent cost analysis
of communication and synchronisation.

Many other models have been proposed for parallel computing. One of
the main divisions among the models is by the type of memory organisa-
tion: distributed or shared. Models based on shared memory are appealing
from the theoretical point of view, because they provide the benefits of nat-
ural problem specification, convenient design and analysis of algorithms,
and straightforward programming. For this reason, the PRAM model has
dominated the theory of parallel computing. However, this model is far
from being realistic, since the cost of supporting shared memory in hard-
ware is much higher than that of distributed memory. Consequently, much
effort was put into the development of efficient methods for simulation of
the PRAM on more realistic models.

In contrast with the PRAM model, the BSP model accurately reflects the
main design features of most existing parallel computers. On an abstract
level, BSP is defined as a distributed memory model with point-to-point
communication between the processors. Paper [Val90b] shows how shared-
memory style programming, with all the associated benefits, can be provided
in BSP by PRAM simulation. However, this approach does not allow the
algorithm designer to exploit data locality, and therefore in many cases may
lead to inefficient algorithms. In this thesis we propose a new model, called
BSPRAM, which stands between BSP and PRAM. The BSPRAM model
is based on a mixture of shared and distributed memory, and allows one to
specify, design, analyse and program shared-memory style algorithms that
exploit data locality. The cost models of BSPRAM and BSP are based

www.manaraa.com

on the same principles, but there are important differences connected with
concurrent memory access in the BSPRAM model. The two models are
related by efficient simulations for a broad range of algorithms.

We identify some properties of a BSPRAM algorithm that suffice for
its optimal simulation in BSP. Algorithms possessing at least one of these
properties obliviousness, high slackness, high granularity = are abundant
in scientific and technical computing. In the subsequent chapters we demon-
strate the meaning and use of such properties by systematically designing
algorithms for problems from three large, partially overlapping domains:
combinatorial computation, dense matrix computation, graph computation.
In view of our simulation results, BSPRAM here plays the role of a method-
ology for generic BSP algorithm design.

The algorithms presented in this thesis, as well as many other BSP algo-
rithms, are defined for input sizes that are sufficiently large with respect to
the number of processors. Apart from simplifying the BSPRAM algorithms,
this condition provides the slackness and granularity necessary for their ef-
ficient BSP simulation. A typical form of such a condition is n > poly(p),
where n is the size of the input, p is the number of processors, and poly is a
low-degree polynomial. Practical problems usually satisfy such conditions.
Because of that, we present the algorithms in their simplest form, without
trying to adapt them for lower values of n. Instead, we only note where
such optimisation is possible, and give references to papers that address this
problem.

For the sake of simplicity, throughout the thesis we ignore small irregular-
ities that arise from imperfect matching of integer parameters. For example,
when we write “divide an array of size n into p regular blocks”, value n may
not be an exact multiple of p, and therefore the blocks may differ in size by
4+1. Sometimes we use square bracket notation for matrices, referring to an
element of an n x n matrix A as A7, j], 1 < i,7 < n. When the matrix is
partitioned into regular blocks of size m x m, we refer to each individual
block as A[[s,t]], 1 < s,t <n/m.

www.manaraa.com

Chapter 2

Bulk-synchronous parallel
computation

2.1 Historical background

The last fifty years have seen the tremendous success of sequential comput-
ing. As pointed out in [Val90a, McC93, McC96¢], this was primarily due
to the existence of a single model, the von Neumann computer, which was
simple and realistic enough to serve as a universal basis for sequential com-
puting. No such basis existed for parallel computing. Instead, there was a
broad variety of hardware designs and programming models.

One of the main traditional divisions among models of parallel program-
ming is the organisation of memory: distributed versus shared. Shared
memory is much costlier to support in hardware than distributed memory.
However, shared memory has some important advantages:

e natural problem specification computational problems have well-
defined input and output, that are assumed to reside in the shared
memory. In contrast, algorithms for a distributed memory model have
to assume a particular distribution of input and output. This dis-
tribution effectively forms a part of the problem specification, thus
restricting the practical applicability of an algorithm.

e convenient design and analysis of algorithms the computation can
be described at the top level as a sequence of transformations to the
global state determined by the contents of the shared memory. In
contrast, algorithms for distributed memory models have to be de-
signed directly in terms of individual processors operating on their
local memories.

e straightforward programming the shared memory is uniformly ac-
cessible via a single address space using two basic primitives: reading

www.manaraa.com

2.1. HISTORICAL BACKGROUND 7

and writing. In contrast, programming for distributed memory models
is more complicated, typically involving point-to-point communication
between processors via the network.

The computational model most widely used in the theory of paral-
lel computing is the Parallel Random Access Machine (PRAM) (see e.g.
[CLR90, KR90, JaJ92, McC93]). The PRAM consists of a potentially infi-
nite number of processors, each connected to a common memory unit with
potentially infinite capacity. The computation is completely synchronous.
Accessing a single value in the memory costs the same as performing an
arithmetic or Boolean operation on a single value.

Several variants of the PRAM model have been introduced. Among
them are the exclusive read, exclusive write PRAM (EREW PRAM), which
requires that every memory cell is accessed by not more than one processor
in any one step, and the concurrent read, concurrent write PRAM (CRCW
PRAM), which allows several processors to access a cell concurrently in one
step. For the CRCW PRAM, a rule to resolve concurrent writing must be
adopted. One of the possibilities, realised in the combining CRCW PRAM
(see e.g. [CLR90, pages 690-691]), is to write some specified combination of
the values being written and (optionally) the value stored previously at the
target cell. A typical choice of the combining function is some commutative
and associative operator such as the sum or the maximum of the values.

Another major model of parallel computation is the circuit model (see
e.g. [KR90, McC93]). A circuit is a directed acyclic graph (dag) with labeled
nodes. We call a node terminal, if it is either a source (node of indegree 0),
or a sink (node of outdegree 0). In a circuit, source nodes are labeled as
input, sink nodes are labeled as output, and nonterminal nodes are labeled
by arithmetic or Boolean operations. Algorithms that can be represented by
circuits are oblivious, i.e. perform the same sequence of operations for any
input (although the arguments and results of individual operations may, of
course, depend on the inputs). Such algorithms are simpler to analyse than
non-oblivious ones. Circuits also provide a useful intermediate stage in the
design of algorithms for PRAM-type models: the problem of designing a
circuit is separated from the problem of scheduling its underlying dag. For
example, while the question of an optimal solution to the matrix multipli-
cation problem remains open, one can find optimal scheduling for particular
circuits representing e.g. the standard ©(n?) method, or Strassen’s ©(n!°87)
method. In this thesis we study the scheduling problem for several classes
of dags.

Both the PRAM and the circuit model are simple and straightforward.
However, these models do not take into account the limited computational
resources of existing computers, and therefore are far from being realistic.
The first step in making them more realistic was to introduce a new complex-
ity measure, efficiency, depending on the number of processors used by the

www.manaraa.com

8 CHAPTER 2. BSP COMPUTATION

algorithm (see [KRS90]). New parallel models were gradually introduced
to account for resources other than the number of processors. Currently,
dozens of such models exists; see [LMR96, MMT95, ST98] for a survey.
Among the computer resources measured by these models are, according to
[LMRY6], the number of processors, memory organisation (distributed or
shared), communication latency, degree of asynchrony, bandwidth, message
handling overhead, block transfer, memory hierarchy, memory contention,
network topology, and many others.

Models that include many different resource metrics tend to be too com-
plex. A useful model should be concise and concentrate on a small number
of crucial resources. One of the simplest and most elegant parallel models is
the BSP model — see [Val90a, McC95, McC96¢, McC98] for the description
of BSP as an emerging paradigm for general-purpose parallel computing.
The BSP model is defined by a few qualitative characteristics: uniform
network topology, barrier-style bulk synchronisation, and by three quantita-
tive parameters: the number of processors, communication throughput, and
latency. The main principle of BSP is to regard communication and syn-
chronisation as separate activities, possibly performed by different mecha-
nisms. The corresponding costs are independent and compositional, i.e. can
be simply added together to obtain the total cost. It is easy to extend the
BSP model to account for memory efficiency as well. Such an extension
is considered in [MT], where memory-efficient BSP algorithms for matrix
multiplication are analysed.

In this thesis we propose a variant of BSP, called BSPRAM, intended to
support shared-memory style BSP programming. The memory of BSPRAM
has two levels: local memory of individual processors, and a shared global
memory. We compare BSPRAM with similar existing models. We then
study the relationship between BSPRAM and BSP by means of simulation.
Let n denote the size of the input to a program. Following [Val90b], we say
that a model A can optimally simulate a model B if there is a compilation
algorithm that transforms any program with cost T'(n) on B to a program
with cost O(T'(n)) on A. If the compilation algorithm yields a randomised
program for A, we call the simulation optimal if the expected cost of the ran-
domised program is O(T'(n)). Sometimes the simulation may be restricted
to programs from a particular class. We assume that we are free to define
a suitable distribution of the input and output data to simulate a shared
memory model on a distributed memory one.

If the described compilation is defined only for a particular class of algo-
rithms, we say that A can optimally simulate B for that class of algorithms.
We show that BSP can optimally simulate BSPRAM for several large classes
of algorithms.

www.manaraa.com

2.2. THE BSP MODEL 9

1 2 p
PM PM e o o PM

BSP(p, g,1)

NETWORK(g,)

Figure 2.1: A BSP computer

superstep superstep superstep

| | | |
comp comimn comp comm comp

Figure 2.2: A BSP computation

2.2 The BSP model

A BSP computer, introduced in [Val89, Val90b, Val90a], consists of p pro-
cessors connected by a communication network (see Figure 2.1). Each pro-
cessor has a fast local memory. The processors may follow different threads
of computation. A BSP computation is a sequence of supersteps (see Fig-
ure 2.2). A superstep consists of an input phase, a local computation phase
and an output phase. In the input phase, a processor receives data that were
sent to it in the previous superstep; in the output phase, it can send data
to other processors, to be received in the next superstep. The processors
are synchronised between supersteps. The computation within a superstep
is asynchronous.

Let cost unit be the cost of performing a basic arithmetic operation or a
local memory access. If, for a particular superstep, w is the maximum num-
ber of local operations performed by each processor, h' (respectively, h")
is the maximum number of data units received (respectively, sent) by each
processor, and h = h' + h” (another possible definition is h = max(h', h")),
then the cost of the superstep is defined as w + h - g + . Here g and | are
the BSP parameters of the computer. The value g is the communication
throughput ratio (also called “bandwidth inefficiency” or “gap”), the value
[is the communication latency (also called “synchronisation periodicity”).

www.manharaa.com

10 CHAPTER 2. BSP COMPUTATION

We write BSP(p, g,1) to denote a BSP computer with the given values of p,
g and [. If a computation consists of S supersteps with costs wys + hs-g+1,
1 < s < S, then its total cost is W+ H - g+ S -1, where W = 25:1 Ws
is the local computation cost, H = 25:1 hs is the communication cost, and
S is the synchronisation cost. The values of W, H and S typically depend
on the number of processors p and on the problem size. We define the lo-
cal computation volume VW as the total number of local operations, and the
communication volume H as the total number of data units transferred be-
tween the processors. We call a BSP computation balanced, it W = O(W/p)
and H = O(H/p).

In order to utilise the computer resources efficiently, a typical BSP pro-
gram regards the values p, g and [as configuration parameters. Algorithm
design should aim to minimise local computation, communication and syn-
chronisation costs for any realistic values of these parameters. For most
problems, a balanced distribution of data and computation work will lead
to algorithms that achieve optimal cost values simultaneously. However, for
some other problems a need to trade off the costs will arise.

An example of a communication-synchronisation tradeoff is the prob-
lem of broadcasting a single value from a processor. It can be performed
with H = S = O(logp) by a balanced binary tree, or with H = O(p) and
S = O(1) by sending the value directly to every processor (this was ob-
served in [Val90a]). On the other hand, a technique known as two-phase
broadcast allows one to achieve perfect balance for the problem of broad-
casting n > p values from one processor. By dividing the values into p blocks
of size n/p, scattering the blocks so that each one gets to a distinct proces-
sor, and then performing total exchange of the blocks, the problem can be
solved with H = O(n) and S = O(1) — both cost values are obviously op-
timal. Communication-optimal broadcasting of n values, 1 < n < p, can be
performed in 1 4 logp/logn phases. The values are scattered so that each
one gets to a distinct processor, then each value is broadcast by a balanced
tree of degree n and height logp/logn. The communication and synchro-
nisation costs of such simultaneous broadcast are H = O(n - logp/logn),
S = O(logp/logn). For n = p¢, where € is a constant, 0 < ¢ < 1, both
cost values are trivially optimal. For any asymptotically smaller n, there is
a communication-synchronisation tradeoff.

Matrix computations provide further examples of problems with and
without tradeoffs: for instance, matrix multiplication can be done opti-
mally in communication and synchronisation, but matrix inversion presents
a tradeoff between communication and synchronisation.

The BSP model does not directly support shared memory, broadcasting
or combining. These facilities can be obtained by simulating a PRAM on a
BSP computer. Such simulation is also called the automatic mode of BSP
programming, as opposed to the direct mode, i.e. programming with explicit

www.manaraa.com

2.2. THE BSP MODEL 11

control over memory management.

In order to achieve efficient simulation of a PRAM on a BSP computer,
the PRAM must have more processors than the BSP computer. For a BSP
computer with a fixed value of p, we say that a PRAM algorithm has slack-
ness o, if at least op PRAM processors perform reading or writing at ev-
ery step. Slackness measures the “degree of communication parallelism”
achieved by the algorithm, and is typically a function of the problem size n
and the number of BSP processors p.

In the automatic mode, each step of a PRAM is implemented as a su-
perstep, with at least o virtual PRAM processors allocated to each of the
p BSP processors. Virtual processor allocation is equal and non-repeating,
but otherwise arbitrary. Paper [Val90b] provides the following result.

Theorem 1. Let ¢ = O(1), | = O(o). An optimal randomised simulation
on BSP(p,g,l) can be achieved for

(i) any EREW PRAM algorithm with slackness o > logp;

(ii) any CRCW PRAM algorithm with slackness o > p° for a constant
e > 0.

Proof. See [Val90b]. [

Memory access in the randomised simulation is made uniform by hash-
ing: each memory cell of the simulated PRAM is represented by a cell in the
local memory of one of the BSP processors, chosen according to some easily
computable hash function which ensures nearly random and independent
distribution of cells.

The simulation allows one to write PRAM programs for BSP computers
and to predict their performance accurately. Most practical problems pos-
sess the slackness necessary for efficient simulation. However, the automatic
mode does not allow the programmer to exploit data locality, because PRAM
processors do not have any local memory. This lack of data locality may
be insignificant for highly irregular problems (e.g. multiplication of sparse
matrices with a random pattern of nonzeros). On the other hand, data lo-
cality should be preserved when dealing with more structured problems (e.g.
multiplication of dense matrices, or sparse matrices with a regular nonzero
pattern). Efficient BSP solution of such problems cannot be achieved via
the automatic mode.

The next section aims to reconcile the exploitation of data locality with
shared-memory style programming, retaining the parameters g and [and
the bulk-synchronous structure of the computation. We introduce a new
BSP-type model, called BSPRAM, in which the network is implemented
as a random-access shared memory unit. The new model is designed to
combine the best features of both automatic and direct BSP programming
modes. We present a randomised BSP simulation of BSPRAM, based on

www.manaraa.com

12 CHAPTER 2. BSP COMPUTATION

1 2 p
PM PM o o o PM

BSPRAM(p, g,1)

MAIN MEMORY (g, 1)

Figure 2.3: A BSPRAM

a suitably adapted concept of slackness. We also describe a deterministic
simulation, based on additional properties of obliviousness and granularity.

2.3 The BSPRAM model

In the previous section we described two alternative approaches to BSP
programming. The automatic mode (PRAM simulation) enables the shared-
memory style BSP programming with all its benefits. However, it does not
allow one to exploit data locality. On the other hand, the direct mode (pure
BSP) allows one to exploit data locality, but only in a distributed memory
paradigm. The aim of this section is to introduce a new BSP programming
method, allowing both shared-memory style programming and exploitation
of data locality. This might be called a “semi-automatic mode” of BSP
programming.

The new method is similar to the PRAM simulation method mentioned
in the previous section. The key difference is that a BSP superstep is no
longer fragmented into independent steps of op individual virtual PRAM
processors. The structure of computation in the local memories of BSP pro-
cessors is preserved. The simulation mechanism is used to model the global
shared memory, which in the new model replaces the BSP communication
network. We call the new computational model BSPRAM.

Formally, a BSPRAM consists of p processors with fast local memories
(see Figure 2.3). In addition, there is a single shared main memory. As in
BSP, the computation proceeds by supersteps (see Figure 2.4). A superstep
consists of an input phase, a local computation phase, and an output phase.
In the input phase a processor can read data from the main memory; in the
output phase it can write data to the main memory. The processors are
synchronised between supersteps. The computation within a superstep is
asynchronous.

As with the PRAM, concurrent access to the main memory in one su-
perstep can be either allowed or disallowed. In this thesis we consider an
exclusive-read, exclusive-write BSPRAM (EREW BSPRAM), in which ev-
ery cell of the main memory can be read from and written to only once in
every superstep, and a concurrent-read, concurrent-write BSPRAM (CRCW
BSPRAM), that has no restrictions on concurrent access to the main mem-

www.manaraa.com

2.3. THE BSPRAM MODEL 13

superstep superstep superstep

Lo DL
comp out Im comp out In comp
Figure 2.4: A BSPRAM computation

ory. For convenience of algorithm design, we assume that if a value z is
being written to a main memory cell containing the value y, the result
may be determined by any prescribed function f(z,y) computable in time
O(1). Similarly, if values z1,...,z, are being written concurrently to a
main memory cell containing the value y, the result may be determined by
any prescribed function f(z1 @ -+ ® x,,,y), where @ is a commutative and
associative operator, and both f and @ are computable in time O(1). This
corresponds to resolving concurrent writing in PRAM by combining (see e.g.
[CLRY0]).

In a similar way to the BSP model, the cost of a BSPRAM superstep is
defined as w+ h - g + 1. Here w is the maximum number of local operations
performed by each processor, and h = h’' + h"”. The value of h’ (respectively,
h") is defined as the maximum number of data units read from (respectively,
written to) the main memory by each processor in the superstep. As in
BSP, the values g and [are fixed parameters of the computer. We write
BSPRAM(p, g,1) to denote a BSPRAM with the given values of p, g and
I. The cost of a computation consisting of several supersteps is defined as
W4+ H-g+S-1, where W, H and S have the same meaning as in the BSP
model.

One of the early models similar to BSPRAM was the LPRAM model pro-
posed in [ACS90]. The model consists of a number of synchronously working
processors with large local memories and a global shared memory. The only
mode of concurrent memory access considered in [ACS90] is CREW. The
model has an explicit bandwidth parameter, corresponding to g in BSP and
BSPRAM. There is no accounting for synchronisation cost, although it is
suggested as a possible extension of the model. Thus, a p-processor LPRAM
is equivalent (up to a constant factor) to CREW BSPRAM(p, g, 1).

Another model similar to BSPRAM, called the Asynchronous PRAM,
was proposed in [Gib93] (an earlier version of this model was called the Phase

www.manharaa.com

14 CHAPTER 2. BSP COMPUTATION

PRAM). Like BSPRAM, the Asynchronous PRAM consists of processor-
memory pairs communicating via a global shared memory. The computa-
tion structure is bulk-synchronous, with EREW communication. The model
charges unit cost for a global read/write operation, d units for communica-
tion startup and B units for barrier synchronisation. Thus, a p-processor
Asynchronous PRAM is equivalent (up to a constant factor) to EREW
BSPRAM(p, 1,d + B).

A bulk-synchronous parallel model QSM is proposed in [GMR99, GMR,
Ram99] (an earlier version of this model was called QRQW PRAM). The
model has a bandwidth parameter g. A p-processor QSM machine is similar
to BSPRAM(p, g, 1) with a special mode of concurrent access to the main
memory: any k concurrent accesses to a cell cost k units. Such a model is
more powerful than EREW BSPRAM(p, g, 1), but less powerful than CRCW
BSPRAM(p, g, 1).

An interesting partial alternative to shared memory bulk-synchronous
parallel models is offered by array languages with implicit parallelism. An
example of such a language is ZPL (see [Sny98]), based on the CTA /Phase
Abstractions model described in [AGLT98]. The developers of ZPL have
announced their plans for an extension, called Advanced ZPL, which is likely
to be similar to the BSPRAM model.

Just as for PRAM simulation, some “extra parallelism” is necessary for
efficient BSPRAM simulation on BSP. We say that a BSP or BSPRAM
algorithm has slackness o, if the communication cost of every one of its su-
persteps is at least 0. We adapt the results on PRAM simulation mentioned
in the previous section to obtain an efficient simulation of BSPRAM.

Theorem 2. An optimal randomised simulation on BSP(p, g,l) can be achieved
for

(i) any EREW BSPRAM(p. g,1) algorithm with slackness o > log p;

(ii) any CRCW BSPRAM(p,g,l) algorithm with slackness o > p° for a
constant € > 0.

Proof. Immediately follows from Theorem 1. |

In contrast with Theorem 1, no conditions on g and [are necessary, since
the simulated and the simulating machines have the same BSP parameters.

Apart from randomised simulation by hashing, in some cases an efficient
deterministic simulation of BSPRAM is possible. We consider two important
classes of algorithms for which such deterministic simulation exists.

We say that a BSPRAM algorithm is oblivious if the sequence of oper-
ations executed by each processor is the same for any input of a given size
(although the arguments and results of individual operations may depend on
the inputs). An oblivious algorithm can be represented as a computation of a
uniform family of circuits (for the definition of a uniform family of circuits,

www.manaraa.com

2.3. THE BSPRAM MODEL 15

see e.g. [KR90]). We say that a BSPRAM algorithm is communication-
oblivious, if the sequence of communication and synchronisation operations
executed by a processor is the same for any input of a given size (no such
restriction is made for local computation).

We say that a set of cells in the main memory of BSPRAM constitutes a
granule, if in any input (output) phase each processor either does not read
from (write to) any of these cells, or reads from (writes to) all of them.
Informally, a granule is treated as “one whole piece of data”. We say that a
BSPRAM algorithm has granularity « if all main memory cells used by the
algorithm can be partitioned into granules of size at least . The slackness
of a BSPRAM algorithm will always be at least as large as its granularity:
o>.

Communication-oblivious BSPRAM algorithms, and BSPRAM algorithms

with sufficient granularity, allow optimal deterministic BSP simulation. Ran-
domised hashing is not necessary for communication-oblivious algorithms,
since their communication pattern is known in advance. Therefore, an opti-
mal distribution of main memory cells across BSP processor-memory pairs
can be found off-line. For algorithms with granularity at least p, hashing is
not necessary either, since every granule can be split up into p equal parts
that are evenly distributed across BSP processor-memory pairs. This makes
all communication uniform. In both cases randomised hashing is replaced
by a simple deterministic data distribution. Moreover, for communication-
oblivious algorithms with slackness at least p©, and for algorithms with gran-
ularity at least p, concurrent memory access can be simulated by mechanisms
similar to the two-phase and (14 ¢~ !)-phase broadcast described in the pre-
vious section.

Below we formally state the results on deterministic BSPRAM simula-
tion, published previously in [Tis96, Tis98].

Theorem 3. An optimal deterministic simulation on BSP(p,g,l) can be
achieved for

(i) any communication-oblivious EREW BSPRAM(p, g,1) algorithm;

(ii) any communication-oblivious CRCW BSPRAM(p, g,1) algorithm with
slackness o > p¢ for a constant € > 0;

(iit) any CRCW BSPRAM(p, g,1) algorithm with granularity ~v > p.

Proof. (i) Since the communication pattern of a communication-oblivious
algorithm is known in advance, we only need to show that any computation
of EREW BSPRAM (i.e. a particular run of an algorithm) can be performed
in BSP at the same asymptotic cost. First, we modify each BSPRAM su-
perstep so that each processor both reads and writes any main memory cell
that it either reads or writes in the original superstep. This increases the

www.manaraa.com

16 CHAPTER 2. BSP COMPUTATION

communication cost of the computation at most by a factor of 2, and does
not change the synchronisation cost.

The above modification essentially transforms the computation into a
form of message passing, in which main memory cells represent messages,
and writing or reading a value corresponds to sending or receiving a mes-
sage. This message-passing version of BSPRAM was referred to as “BSP+”
in [Tis96]. Its difference from direct BSP mode is that a message can be
“delayed”, i.e. its sending and receiving may occur in non-adjacent super-
steps.

It remains to show that the “delayed” messages can be simulated opti-
mally by normal BSP messages. We represent the whole BSPRAM compu-
tation by an undirected graph. Each superstep is represented by two nodes,
one for the input phase and the other for the output phase. Messages are
represented by edges. Two nodes v; and vy are connected by an edge e, if
the message represented by e is sent in the output phase represented by vy,
and received in the input phase represented by vs. The constructed graph
is bipartite, with the two parts representing all input and output phases
respectively. If an input or output phase has cost h, then the degree of its
representing node is at most ph.

It is known (see e.g. [Ber85, page 247]), that for any bipartite graph
with maximum degree at most p, there is a colouring of its edges with not
more than p colours, such that all the edges adjacent to the same node are
coloured differently. As an easy corollary of this, for an arbitrary bipartite
graph and an arbitrary p, there is a colouring of the edges with not more
than p colours, such for an arbitrary h, any node of degree at most ph has
at most h adjacent edges of of each colour. (This can be proved by splitting
each node of degree at most ph into h nodes of degree at most p.)

We use the above theorem to colour the computation graph. We then
regard the colour of each edge as the identifier of a BSP processor that must
obtain the corresponding message from the sending processor, keep it in its
local memory for as long as necessary, and then transfer the message to the
receiving processor. The communication and synchronisation costs of the
computation are increased at most by a factor of 2.

(ii) The proof is similar to that of (i). The only difference is that, due
to concurrent reading and writing, each message has to be combined from
contributions of several processors before being sent, and broadcast to sev-
eral processors after being received. Consider a particular superstep in the
computation. By symmetry, we need to analyse only the input phase. Si-
multaneous broadcasting of received messages is done by a method which
generalises the simultaneous broadcast technique from Section 2.2. Without
loss of generality, we assume that the communication cost of the considered
input phase is h = 0 = p, 0 < € < 1. Each message is broadcast by a tree
of maximum degree h and height at most e ! (the tree does not have to be

www.manaraa.com

2.3. THE BSPRAM MODEL 17

balanced). The broadcasting forest is partitioned among the processors so
that on each level the total degree of nodes computed in any processor is at
most 2h. Such partitioning can be easily obtained by a greedy algorithm.
The communication cost of the computation is increased at most by a factor
of 267!, and the synchronisation cost at most by a factor of e,

(ii1) Partition each granule into p equal subgranules. For each granule,
choose an arbitrary balanced distribution of its subgranules across the pro-
Cessors.

An input phase of the BSPRAM algorithm is simulated by two BSP
supersteps. In the first superstep, a processor broadcasts a request for each
granule that it must read. Note that since the subgranules of every granule
are distributed evenly, all processors receive an identical set of requests. In
the second superstep, a processor satisfies the received requests by sending
the locally stored subgranules of the requested granules to the requesting
processors.

An output phase of the BSPRAM algorithm is simulated by one BSP
superstep. In this superstep, a processor divides each granule that it must
write into p subgranules, and sends to every processor the appropriate sub-
granules. Having received its subgranules, each processor combines any con-
currently written data, and then updates the locally stored subgranules.

The communication and synchronisation costs of the computation are
increased at most by a factor of 2. |

The proofs of Theorems 2 and 3 show that a BSP computer can execute
many practical BSPRAM algorithms within a low constant factor of their
cost. For two important classes of algorithms communication-oblivious
algorithms and algorithms with sufficient granularity — the simulation is
deterministic and particularly simple.

It is intuitively clear that in general, the BSPRAM shared memory mech-
anism is at least as powerful as BSP message passing. However, not every
BSP algorithm can be optimally simulated on a BSPRAM, due to different
input-output conventions. The following result gives a simulation, which is
sufficient for most practical applications.

Theorem 4. An optimal deterministic simulation on an EREW BSPRAM(p, g,1)

can be achieved for any BSP(p,g,l) algorithm with slackness o > p.

Proof. The main memory of a BSPRAM is partitioned into p? areas. Each
area corresponds to a pair of communicating BSP processors. Sending a
message from processor p; to processor ps is implemented by p; writing the
message, preceded by its length, to the area corresponding to the pair p,q.
Receiving this message is implemented by g reading the length, and then
the message (if the length is nonzero). [|

In the rest of this thesis, we develop and analyse BSP algorithms for
some common computational problems. The BSPRAM model is used as the

www.manaraa.com

18 CHAPTER 2. BSP COMPUTATION

basis of our presentation. Sometimes it is convenient to use BSP message
passing for (some part of) the computation, while keeping BSPRAM shared
memory for input-output. In such cases we extend the BSPRAM model
by assuming that the processors, in addition to the shared memory, are
connected by a BSP-style communication network. In this extended model,
a computation is a mixture of BSPRAM-style and BSP-style supersteps;
we will say that the computation switches between shared-memory mode
and message-passing mode. Such mixed algorithms can be translated into
pure BSP by the simulation mechanisms of Theorems 2, 3, and into pure
BSPRAM by Theorem 4.

When analysing slackness and granularity, we will often ignore a part
of the computation which is non-critical, i.e. does not affect the asymptotic
cost of the whole algorithm. The reason for it is that such non-critical
computation may be simulated non-optimally without reducing the overall
performance. Every time when such an omission is made, we will indicate
explicitly the part of the computation which is considered non-critical.

www.manharaa.com

Chapter 3

Combinatorial computation
in the BSP model

3.1 Complete binary tree computation

One of the main divisions in computer science is between “algebraic” and
“combinatorial” computation. Both terms are usually understood in a broad
sense, and some algorithms fall under both categories. We will consider
computational problems of an algebraic nature in Chapters 4 and 5. In this
chapter, we concentrate on simple combinatorial objects, such as dags, ar-
rays, linked lists and trees. The first few sections deal with BSP computation
of dags.

As defined in Section 2.1, a dag is a directed acyclic graph. We will
usually ignore terminal nodes when establishing the size and the depth of
a dag. Also, we will not show terminal nodes in pictures of dags, when
this does not create confusion. By computation of a dag we understand
computation of a circuit based on that dag. When a dag is computed in
parallel, we call an edge u — v local, if it does not require communication —
that is, the set of processors computing v is a subset of the set of processors
computing u. We call a node v local, if all its incoming edges are local —
that is, any processor computing v computes also all predecessors of v.

The communication cost of parallel dag computation has been analysed
e.g. in [PU87, PY90, JKS93]. These papers adopt a synchronous commu-
nication cost model, where a nonlocal edge incurs a fixed communication
delay. The number of processors is unbounded. A node may be computed,
in general, more than once by different processors. Paper [JKS93] shows
that such recomputation of nodes is necessary for an asymptotically opti-
mal computation of certain dags in the given model.

In a BSP dag computation, we also allow recomputation of nodes. How-
ever, it is not required by any of the algorithms in this chapter.

We begin with a simple problem of computing a circuit based on a com-

19

www.manaraa.com

20 CHAPTER 3. COMBINATORIAL COMPUTATION IN BSP

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3.1: Complete binary tree cbtree(16)

cbtree(4)

\

cbtree(4) cbtree(4) cbtree(4) chtree(4)

0 1 2 3 4 5 6 7 8§ 9 10 11 12 13 14 15

Figure 3.2: BSPRAM computation of cbtree(16)

plete binary tree. This problem often occurs in practice, and has important
applications to other problems, such as computing all-prefix sums. The
analysis of complete binary tree computation will help us to illustrate the
BSPRAM model, as well as the concepts of communication-obliviousness,
slackness and granularity.

As in any circuit, each node in the tree represents an elementary opera-
tion. Depending on the nature of the computation, we can view the node’s
parent as the input and the children as the outputs, or vice versa. We will
call these two versions of tree computation top-to-bottom and bottom-to-top,
respectively. By symmetry, we need to analyse only one of the two. We
choose top-to-bottom computation, which generalises the broadcast prob-
lem considered in Section 2.2 (the operation of each node in the case of
broadcast is simple replication of the input). We denote the complete one-
input, n-output binary tree dag by cbtree(n). This dag has n— 1 nonterminal
nodes, and depth logn. Figure 3.1 shows the dag cbtree(16).

For a BSPRAM computation of the tree, we assume that the input and
the outputs are stored in the main memory. The computation method re-
sembles the broadcast techniques from Section 2.2. Figure 3.2 shows the
computation for n = 16, p = 4.

www.manaraa.com

3.1. COMPLETE BINARY TREE COMPUTATION 21

Algorithm 1. Computation of a complete binary tree.

Parameters: integer n > p'*€ for some constant ¢ > 0; a circuit based on
chtree(n).

Input: value x.
Output: values y;, 0 <1 < n, computed by the circuit.

Description. The computation is performed on an EREW BSPRAM(p, g,1)
in shared-memory or message-passing mode. If ¢ > 1, the computation pro-
ceeds in two supersteps. The first superstep computes the top logp levels
of the tree, and the second superstep the remaining logn — logp levels. If
0 < € < 1, the computation proceeds in 1 4+ ¢! supersteps. Each superstep
computes e log p levels of the tree, except the last superstep, which computes
the remaining logn — log p levels.

Cost analysis. For ¢ > 1, the local computation, communication and syn-
chronisation costs are

W=0(n/p) H=O0(/p) S5=0()

For 0 < € < 1, the local computation, communication and synchronisa-
tion costs are

W =0(n/p) H=0("nfp)=0m/p) §=0(")=0()

The algorithm is oblivious, with slackness and granularityc =vy=1. R

Bottom-to-top complete binary tree computation is symmetric to the algo-
rithm above.

In Algorithm 1, each of the three cost values W, H, S, taken indepen-
dently, is trivially optimal.

An important application of complete binary trees is the problem of
computing all-prefix sums on an array of size n (see e.g. [Ble93, LD94]). The
problem is formulated as follows: given an input array (zo,%1,...,%n 1),
compute the output (yo, y1,---,Yn—1) = (Lo, To®T1, ..., oL @ - 02X 1),
where o is an associative operator computable in time O(1). A standard
method of computing all-prefix sums in parallel, proposed in [BK82] (see
also [LDY94]), can be represented by a dag allpref(n), shown in Figure 3.3
for n = 8. Here, the action of a node with inputs z, y is

N/
VAN

rey

www.manaraa.com

22 CHAPTER 3. COMBINATORIAL COMPUTATION IN BSP

. g1 TQ T3 T4 Ty T Ty

: IX\

Yo Y1 Y2 Y3 Ya Ys Ye Y7

Figure 3.3: All-prefix sums dag allpref (8)

To expose the symmetry of the method, we have introduced a dummy value,
shown in Figure 3.3 by a dot . The action of a node with inputs -, z is

o/

[e]

The dag allpref (n) consists of two linked complete binary trees, the
first computed bottom-to-top, the second top-to-bottom. In total, the dag
allpref (n) has 2n — 2 nonterminal nodes, and depth 2logn. If n > p' ™€ for
a constant € > 0, Algorithm 1 allows one to compute all-prefix sums with
BSP cost W = O(n/p), H=0(n/p), S = O(1).

T

T

3.2 Butterfly dag computation

The butterfly dag represents the dependence pattern of the Fast Fourier
Transform. Another application of the butterfly dag is in the bitonic sorting
network (see e.g. [CLR90]). Parallel algorithms for the butterfly dag com-
putation have been proposed in various parallel models (see e.g. [CLR90,
JaJ92]).

The butterfly dag bfly(n) takes n inputs z;, and produces n outputs y;,
0 < i < n. The dag contains logn levels of nodes, with n/2 nodes in each
level. For all 4, 0 < ¢ < n, let us define u? = z;, and let uf, 1 <k <logn,

www.manaraa.com

3.2. BUTTERFLY DAG COMPUTATION 23

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15

) QP) Q
WD ()

< S>< >
> @ @
0’ 0’0

[

—

Se
PO

¢

0

=

¢

o\g

:0
o
0
i
:
0
:

=

{

S

‘2
|
!
s
i
|
!
|

o
ozo
)
)
o

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3.4: Butterfly dag bfly(16)

denote the output of level k£ — 1, so that uéogn = y;. In level k, there is a node

P Wbt i and only if [—i| = 2F.
In total, there are 1/2 - nlogn nonterminal nodes, and the depth of the dag
is logn. Figure 3.4 shows the butterfly dag bfly(16).

As observed in [PY90, Val90a] (see also [GHSJ96]), the butterfly dag
can be partitioned in a way suitable for bulk-synchronous parallel compu-
tation. The computation of a level in bfly(n) consists of n/2 independent
computations of bfly(2). Similarly, the computation of any k consecutive
levels consists of n/2F independent computations of bfly(2¥). Therefore,
the butterfly dag computation can be split into two stages, each comprising
1/2-log n levels and consisting of n'/? independent tasks. If n is sufficiently
large with respect to p, each of the two stages can be completed in one
superstep.

with inputs uf, u?, and with outputs u

Figure 3.5 shows the two-superstep computation of bfly(16). In each su-
perstep, four independent computations of bfly(4) are performed. In general,
the algorithm is as follows.

Algorithm 2. Computation of the butterfly dag bfly(n).
Parameters: integer n > p?; a circuit based on bfly(n).
Input: values x;, 0 < i < n.

Output: values y;, 0 < i < n, computed by the circuit.

Description. The computation is performed on an EREW BSPRAM(p, g,1)
and proceeds in two supersteps, each comprising 1/2 - logn levels. In both

www.manaraa.com

24 CHAPTER 3. COMBINATORIAL COMPUTATION IN BSP

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Lottt
bfly(4) bfly(4) bfly(4) bfly(4)
bfly(4) bfly(4) bfly(4) bfly(4)
Tttt o rrrrorrl
0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

Figure 3.5: BSPRAM computation of bfly(16)

supersteps, each processor is assigned n]/Q/p independent butterfly dags of
size n'/2.

Cost analysis. The local computation, communication and synchronisa-
tion costs are

W = O(nlogn/p) H = O(n/p) S =0(1)

The algorithm is oblivious, with slackness o = n/p, and granularity v =
n/p?. []

The asymptotic BSP costs of Algorithm 2 are independently optimal.
Efficient BSP computation of a butterfly dag for 1 < n < p? is considered
in [Val90a).

3.3 Cube dag computation

The cube dag defines the dependence pattern that characterises a large
number of scientific algorithms. Here we describe a BSPRAM version of
the BSP cube dag algorithm from [McC95]. For simplicity, we consider
the computation of a three-dimensional cube dag. The algorithm for other
dimensions is similar.

The three-dimensional cube dag cubes(n) with inputs mﬁ), mgz), TS?)’ and

1 2 3
outputs y_g.k), ygk), yzgj) 3

such that

, 0 < 4,5,k < n, contains n° nonterminal nodes v;;y,

Voik, Viok, Vijo input respectively 2V, (2 23
0jk» Viok, Vijo 1P p Y Tk LTig'» Tij
v;jk 18 connected to each of the nodes

Vit ,jks Vij+1,ks Vijk+1 Whenever such node exists

. 1 2 3
Un—1j.ks Vim—1k> Vijn—1 produce respectively y‘g.k), ygk), ygj)

www.manaraa.com

3.3. CUBE DAG COMPUTATION 25

300 303

000

-

333

030 033

Figure 3.6: Cube dag cubes(4)

m00 mOm
000 I
T
cubes(n/p'/?) __d_
mmm
0m0 Omm

Figure 3.7: BSPRAM computation of cubeg(n), m =n —1

The depth of the dag is 3n — 2. Figure 3.6 shows the cube dag cubes(4).

The BSP algorithm for computing the dag cubes(n) is given in [McC95].
In this algorithm, the array V = (v;;;,) is partitioned into p3/? regular cubic
blocks of size n/p]/Q. We denote these blocks by Vi, 0 < 4,7,k < p'/?.
Each block defines a dag isomorphic to cubes (n/pl/Q). The algorithm com-
putes a block V;;i as soon as the data from its predecessors V;_y jr, Vi i1k,
Vi,jk—1 become available. The diagonal layer of simultaneously computed
independent blocks forms the computation “wavefront”.

Figure 3.7 shows a stage in the BSP computation of cubesz(n). The
shaded diagonal layer of blocks is the current wavefront. The total number
of layers is 3p'/? — 2, therefore the computation can be completed in O(p'/?)
supersteps.

Algorithm 3. Computation of the cube dag cubes(n).

Parameters: integer n > p'/2; a circuit based on cubes(n).

Input: values mﬁ), ’I'Si), 'rz(:), 0<4,5,k <n.

(m 2 3)

Output: values yj}c s Yik s ym3 , 0<14,7,k <n, computed by the circuit.

www.manaraa.com

26 CHAPTER 3. COMBINATORIAL COMPUTATION IN BSP

Description. The computation is performed on an EREW BSPRAM(p, g,1)
and proceeds in 3p'/2 — 2 stages, each comprising a constant number of su-
persteps. In stage s, 0 < s < 3p'/2 — 2, the blocks Vijg with i+ 75 +k = s
are computed. The maximum number of blocks computed in any one stage

is 3p/4.

Cost analysis. The local computation cost is W = O(n?/p). The com-
putation of a block requires the communication of O(n?/p) values on the
surface of the block. Therefore, the communication cost of each stage is
h = O(n?/p). The total communication cost is H = h - p'/?2 = O(n?/p'/?).
The synchronisation cost is § = O(pl/ 2). The algorithm is oblivious, with
slackness and granularity o = v = n?/p. |

The definition of a three-dimensional cube dag can be naturally gener-
alised to any dimension. A two-dimensional dag is called the diamond dag.
It can be computed by an algorithm similar to Algorithm 3 with BSP cost
W = O(n?/p), H=0(n), S = O(p). In general, the BSP cost of computing
a cube dag cubey(n) is W = O(n?/p), H = O(nd’]/p%), S = O(pd%).

The BSP cost values of Algorithm 3 are not independently optimal.
However, H and S are optimal for any computation with W = O(n?/p). To
prove the optimality in H, we need the following lemma.

Lemma 1. Any BSPRAM(p, g.l) computation of cubes(n) with local com-
putation cost W < 5/36 - n® requires communication volume H > 1/6 - n%.

Proof. Suppose the communication volume is less than 1/6 - n2. Then the
dag must have less than 1/6 - n? nonlocal nodes. Partition the dag into n
parallel planes. The middle plane divides the dag into a lower-indexed and
a higher-indexed half. At least one of the planes in the higher-indexed half
contains less than (1/6 - n%)/(1/2-n) = 1/3 - n nonlocal nodes; we will call
it the base plane. Consider two orthogonal partitionings of the base plane
into n parallel lines. In each partitioning, there are more than 2/3 - n lines
consisting of local nodes only. The intersection of these two line families
contains more than (2/3-n)? = 4/9 - n? nodes. We call this intersection the
base diamond, and the highest-indexed node in the base diamond the base
node.

Consider the set of lines intersecting the base plane orthogonally at the
base diamond. More than 4/9-n? —1/6-n% = 5/18-n? of the lines consist of
local nodes only. In total, we have more than 5/18-n3 local nodes, 5/36-n3 of
which are in the lower-indexed half of the dag. By construction, each of these
nodes must be computed by at least the same processors as the base node.
Therefore, the local computation cost is more than 5/36 - n®. Conversely, if
the local computation cost is at most 5/36 - n®, the communication volume
is at least 1/6 - n2. [|

The conditional optimality of Algorithm 3 can now be demonstrated as
follows.

www.manaraa.com

3.4. SORTING 27

Theorem 5. Any BSPRAM(p, g,1) computation of cubes(n) with W = O(n3/p)

requires (i) W = ©(n?®/p), (ii) H = Q(n2/p1/2), (iii) S = Q(pl/Q).
Proof. (i) Trivial.

(74) The proof is an extension of the proof given in [PU87] for the diamond
dag.

Let W = O(n?/p). Partition the cube dag into p/? cubic blocks of size
n/p1/2. Consider 3p chains of blocks parallel to the main diagonal. In every
chain, the computation of a block can start only after each node in the
previous block has been computed at least once. For the purpose of a lower
bound, we will ignore all computation in a block after the highest-indexed
node has been computed once.

There are 3/4-p “long” chains, each containing at least 1/2-p'/? blocks.
Since the local computation cost of each chain is O(n?/p), there are Q(pl/Q)
blocks in each “long” chain with local computation cost at most 5/36 -
n3/p3/2. By Lemma 1, the communication volume of such a block is at least
1/6 -n?/p. The total number of such blocks is (3/4 - p) - Q(pl/Q) = Q(p3/2).
Therefore, the total communication volume must be at least (1/6 - n?/p) -
Q(p3/2) = Q(n2 -p1/2). Even when communication is perfectly balanced,
the total communication cost H = Q(n2 -p]/Q)/p = Q(nQ/p]/Q).

(ii1) Nodes of the main diagonal v;;, 0 < i < n, first computed in each
particular superstep, form a consecutive segment. We denote the sizes of
these segments by m,, 0 < s < S, where) . _¢m, = n. Since the
communication within a superstep is not allowed, all nodes in the diagonal
cubic block of size m, spanned by the segment s must be computed by
the processor that first computes the highest-indexed node of the block.
The local computation cost of a block is therefore m3. The total cost of
local computation is bounded from below by the sum over all supersteps:
> o<s<gms. By Holder’s inequality,

1/3
n = stz Zl-ms<52/3-(2mi) SSQ/B-W1/3
0<s<S 0<s<S 0<s<S
Hence by assumption S > n3/2/W'/? = Q(p'/?). [|

Theorem 5 can be easily generalised to other dimensions.

3.4 Sorting

Sorting is a classical problem of parallel computing. Many parallel sort-
ing algorithms of different complexity have been proposed (see e.g. [GRS8S,
JaJ92, Col93, TBY5] and references therein). Here we consider comparison-
based sorting of an array x = (z;), 1 <14 < n. Without loss of generality,

www.manaraa.com

28 CHAPTER 3. COMBINATORIAL COMPUTATION IN BSP

we may assume that the elements of x are distinct (otherwise, we should
attach a unique tag to each element). Let (a,b) denote an open interval, i.e.
the set of all z in x such that a < x < b.

Probably the simplest parallel sorting algorithm is parallel sorting by
regular sampling (PSRS), proposed in [SS92] (see also its discussion in
[LLS'93]). Paper [HIB] describes an optimised version of the algorithm,
and its efficient implementation on a variety of platforms.

The PSRS algorithm proceeds as follows. First, the array x is parti-
tioned into p subarrays x',...,x?, each of size n/p. The subarrays x? are
sorted independently by an optimal sequential algorithm. The problem now
consists in merging the p sorted subarrays.

In the first stage of merging, p + 1 regularly spaced primary samples
are selected from each subarray (the first and the last elements of a sub-
array are included among the samples). We denote the samples of the
subarray x? by ig, ..., Zp. The samples divide each subarray into p pri-
mary blocks of size at most n/p?. We denote the primary blocks of x? by
[zg,z7],..., [iz,],ig]- Then, p - (p + 1) primary samples are collected to-
gether and sorted by an arbitrary sequential algorithm. After that, we select
p + 1 regularly spaced secondary samples from the sorted array of primary
samples (the first and the last elements are again included in the samples).
We denote the secondary samples by zg,...,z,. The secondary samples
partition the elements of x into p secondary blocks, corresponding to the in-
tervals <.%0, .f7;1>, e <.’ip,1,.'ip>. Each secondary block is distributed across
the processors. Now it remains to collect the elements of each secondary
block in one particular processor.

Let us show that any secondary block contains at most 3n/p elements.
For a fixed secondary block defined by <.’?;k, ki1 >, we divide all the primary
blocks of x into three categories. We call a primary block [a’:;’, a’:?ﬂ] an inner
block, if <ig,ig+]> C <ik,fk+1>; an outer block, if <ig,£g+] >ﬂ<§k,a:ck+1> =
and a boundary block, if it is neither inner nor outer. With respect to any
secondary block, there are at most p inner primary blocks in total (because
there are only p primary samples inside the secondary block), and at most
two boundary primary blocks in each subarray (because a boundary block
must contain one or both secondary block boundaries). Therefore, the size
of a secondary block is at most n/p? - (p + 2p) = 3n/p. In the second stage
of merging, the elements of each secondary block can be collected in time
O(n/p), and then sorted by an efficient sequential algorithm.

The method is illustrated in Figure 3.8 for p = 3. The state of the array
x after local sorting of the subarrays is represented by three horizontal bars
at the top. Primary samples are shown as white dots. Dotted lines show
the rearrangement of primary samples into a sorted array at the bottom;
note that the order of primary samples from each subarray is preserved, but
the samples from different subarrays may be interleaved. The dashed bars
at the bottom show the elements of x assumed to lie between the samples;

www.manaraa.com

3.4. SORTING 29

X1 X2 X3
3z x3 33 oz oz xS @
@) Y)

Figure 3.8: BSPRAM sorting by regular sampling

the number of elements between adjacent primary samples is not necessar-
ily equal. Black dots indicate the secondary samples. The secondary block
<.’il, .%2> is shown by cross-hatching. Primary blocks that are inner, bound-
ary and outer for <§:1,J’E2> are shown by cross-hatching, simple hatching
and no hatching respectively. Only inner and boundary blocks may contain
elements from (g:m,g:cQ).

The sorting algorithm based on PSRS can be easily implemented in the
BSPRAM model. We assume that the input and output arrays are stored
in the main memory.

Algorithm 4. Sorting by reqular sampling.
Parameter: integer n > p3.

Imput: array x = (z;), 0 < i < n, with all z; distinct.
Output: x rearranged in increasing order.

Description. The computation is performed on a CRCW BSPRAM(p, g,1)
and proceeds in three supersteps. In the first superstep, a processor picks a
subarray x?, reads it, sorts it with an efficient sequential algorithm, selects
p+ 1 primary samples, and writes them to the main memory. In the second
superstep, the processors perform an identical computation: read the p-(p+
1) primary samples, sort them and select p secondary samples. Efficiency
of the above computation with samples is not critical, since the number of
samples does not depend on n. In the third superstep, a processor picks a
secondary block and collects its elements. In order to do this, a processor
receives from other processors (in message-passing mode) all primary blocks
that may intersect with the assigned secondary block. The number of such
blocks is at most 3p, and their total size is at most 3n/p. The processor
merges the received primary blocks, discarding the values that do not belong

www.manaraa.com

30 CHAPTER 3. COMBINATORIAL COMPUTATION IN BSP

to the assigned secondary block. The merged result is written to the main
memory.

Cost analysis. The local computation, communication and synchronisa-
tion costs are

W = O(nlogn/p) H = 0O(n/p) S=0(1)

The algorithm is not communication-oblivious. Its slackness and granularity

are ¢ = n/p, v = n/p? (ignoring non-critical computations with samples).
|

Lower bounds on communication complexity of sorting for various par-
allel models can be found e.g. in [SS92, ABK95]|. The asymptotic BSP costs
of Algorithm 4 are independently optimal.

Paper [Goo96] presents a more complex BSP sorting algorithm, asymp-
totically optimal for any n > p. Its BSP costs are W = O(nlogn/p),
H = O(n/p-logn/log(n/p)). S = O(logn/log(n/p)). For n > p?, the algo-
rithm is identical to PSRS. For smaller values of n, it uses a pipelined tree
merging technique similar to the one employed by Cole’s algorithm (see e.g.
[Col93]). Despite its asymptotic optimality, the algorithm from [Go096] is
unlikely to be practical in the case of n = p. A more practical BSP sorting
algorithm for small values of n is described in [GS96].

3.5 List contraction

This and the following sections consider BSPRAM computation on pointer
structures, such as linked lists and trees. A linked list is a sequence of items.
The order of items is defined by pointers: each item contains a pointer to
the next item in the sequence. The last item contains the null pointer. The
first and the last items of the list are called its head and tail, respectively.
A doubly-linked list contains backward as well as forward pointers.

The most common problem on linked (or doubly-linked) lists is list rank-
ing: for each item determine its distance from the head (or the tail) of the list
(see e.g. [CLRY0, J4J92, RMMM93]). List ranking can be applied to more
general list problems, such as computing all-prefix sums on a list. Following
[LM88], we view these problems as instances of an abstract problem of list
contraction: given an abstract operation of merging two adjacent items as
a primitive, contract the list to a single item. Implementation of the merg-
ing primitive is problem-dependent; it usually involves pointer jumping and
some payload operations (e.g. summation of item values). We assume that
the computation cost of merging two items is O(1).

In a sequential model of computation, a list can be contracted by a triv-
ial algorithm that traverses the list of n items in ©(n) time. The problem
is rather more complicated on parallel models. The easiest way to obtain

www.manaraa.com

3.5. LIST CONTRACTION 31

an efficient parallel list contraction algorithm is by randomisation. Paper
[MRS85] introduced a technique of random mating. The random mating algo-
rithm proceeds in a sequence of rounds. In each round every item is marked
either forward-looking of backward-looking by flipping an independent unbi-
ased coin. Then pairs of adjacent items that “look at each other” merge.
The procedure is repeated until only one item is left. One round of the algo-
rithm reduces the size of the list by about a quarter, therefore the expected
number of parallel steps is ©(logn).

The expected amount of computation performed by the above algorithm
is optimal; however, in the PRAM model the time-processor product' is
still suboptimal. Many attempts have been made to improve the PRAM
time-processor efficiency of randomised list contraction. An algorithm from
[RM96] is time-processor optimal. Although it is slightly suboptimal in time,
it performs better in practice than the more sophisticated algorithm from
[AM90], optimal both in time and in the time-processor product.

Optimal efficiency for randomised list contraction is much easier to achieve
in the BSPRAM model, given sufficient slackness. The following straight-
forward implementation of random mating is based on a BSP algorithm
suggested by [McC96a].

Algorithm 5. Randomised list contraction.
Parameter: integer n > p® - log p.
Input: linked list of size n.

Output: input list contracted to a single item.

Description. The computation is performed on an EREW BSPRAM(p, g,1).

Each processor reads an equal number of input items from the main mem-
ory. After that, the computation is performed in message-passing mode and
proceeds in two stages.

First stage. We reduce the list from n to n/p items by repeated rounds of
random mating. Each round is implemented by a superstep, and consists in
merging all mating pairs. The processor to hold each merged pair is chosen
at random (other methods of choice are possible).

Second stage. The remaining n/p items are collected in a single processor.
This processor completes the contraction by local computation.

Cost analysis. An analysis along the lines of [LM88] shows that O(logp)
rounds will suffice on the first stage with high probability. Since the size
of the list is expected to decrease exponentially, the communication cost of

'This time-processor product is also sometimes called ‘work’; we use the term work for
the actual number of operations performed, which may be smaller than the time-processor
product, due to some processors being idle for some time.

www.manaraa.com

32 CHAPTER 3. COMBINATORIAL COMPUTATION IN BSP

the first round of mating, equal to O(n/p), dominates all subsequent com-
munication with high probability. Expected (with high probability) local
computation, communication and synchronisation costs of the whole algo-
rithm are

Wexp = O(n/p) Hexp = O(n/p) Sexp = ()(logp)

The algorithm is not communication-oblivious. Its expected slackness is
Texp = n/p*. Its granularity is v = 1. |

Another direction of research has been aimed at providing an optimal
deterministic algorithm for list contraction. Known efficient deterministic
algorithms for PRAM (see e.g. [J4J92, RMMMO93]) typically involve the
method of symmetry breaking by deterministic coin tossing introduced in
[CV86]. Such algorithms are complicated and often assume non-standard
arithmetic capabilities of the computational model, e.g. bitwise operations
on integers. As in the case of randomised algorithms, it is much easier to
design an optimal deterministic algorithm for list contraction in the BSP
model, provided that the input size is sufficient. Our deterministic list
contraction algorithm is based on the technique of deterministic mating,
described below.

The algorithm proceeds in several rounds. Each round starts with con-
tracting all chains of adjacent items that are local to any particular pro-
cessor. Any item that remains in the list has both neighbours outside its
containing processor.

After that, a complete weighted digraph is constructed. The graph has
p nodes, each node representing a processor. The weight of an edge v; — v
is defined as the number of adjacent pairs of items, where the leading and
the trailing item are contained in the processor represented by v; and v,
respectively. The graph is used to mark each processor either forward-looking
or backward-looking. Let m be the total number of items before the current
round. The forward and backward marks are assigned in such a way that
the number of adjacent pairs of items “looking at each other” is at least
m/4. Such a marking always exists and can be easily computed from the
graph by a greedy algorithm in sequential time O(p?).

Each item assumes the mark of the containing processor. Then pairs
of neighbours that “look at each other” merge. At this stage, the total
number of remaining items is at most 3m/4, but their distribution across
the processors may not be even. Therefore, it is necessary to redistribute
the items so that each processor receives at most 3m/4p of them. This
completes the current round.

The BSPRAM implementation of deterministic mating is as follows.

Algorithm 6. Deterministic list contraction.

Parameter: integer n > p3 - log p.

www.manaraa.com

3.6. TREE CONTRACTION 33

Input: linked list of size n.

Output: input list contracted to a single item.

Description. The computation is performed on an EREW BSPRAM(p, g,1).

Each processor reads an equal number of input items from the main mem-
ory. After that, the computation is performed in message-passing mode and
proceeds in two stages.

First stage. We reduce the list from n to n/p items by repeated rounds of
deterministic mating. Each round is implemented by three supersteps.

In the first superstep, each processor reduces all local chains and com-
putes the number of links from local items to items in each of the other
processors. This establishes the weights of edges leaving the processor’s
node in the representing graph. After that, the whole graph is collected
in a single processor. This processor computes the marks and tells each
processor its mark.

In the second superstep, pairs of adjacent items that “look at each other”
merge. The processor to hold the merged pair is chosen arbitrarily between
the two processors holding the original items.

The third superstep redistributes the items so that each processor re-
ceives at most 3m/4p of them. This completes the current round.

Second stage. The remaining n/p items are collected in a single processor.
This processor completes the contraction by local computation.

Cost analysis. The total number of rounds necessary to reduce the list
to n/p items in the first stage is O(logp). Since the size of the list de-
creases exponentially, the communication cost of the first round, equal to
O(n/p), dominates all subsequent communication. The local computation,
communication and synchronisation costs of the whole algorithm are

W = O(n/p) H = 0O(n/p) S = O(logp)

The algorithm is not communication-oblivious. Its slackness and granularity
are o = n/p?, v = 1 (ignoring non-critical computation of processor marks).
|

In Algorithms 5 and 6, the asymptotic values of W, H. S are not in-
dependently optimal. Intuitively, it seems likely that H and S are optimal
for any computation with W = O(n/p), but the question of a proof remains
open. Some lower bounds for parallel list contraction have been proved in
[Sib97].

3.6 Tree contraction

Both the randomised and the deterministic versions of list contraction can be
used to solve the problem of tree contraction. This well-studied problem (see

www.manaraa.com

34 CHAPTER 3. COMBINATORIAL COMPUTATION IN BSP

Figure 3.9: BSPRAM tree contraction

e.g. [J4J92, RMMM93]) generalises list contraction. As before, the problem
is defined in terms of an abstract operation of merging two adjacent nodes
in a binary tree; the merging operation is considered primitive. In tree
contraction, two kinds of merging are allowed:

e raking, where a leaf is absorbed into its parent node. The parent
and child of the resulting node are respectively the parent and the
remaining child of the absorbing node.

e compression, where a non-leaf with only one child absorbs its child.
The parent and children of the resulting node are respectively the
parent of and the absorbing node and the children of the absorbed
node.

When the absorbing node has only one child, which is a leaf, merging can
be classified both as raking and compression.

Similarly to list contraction, the goal of tree contraction is to reduce
the tree to a single node. Tree contraction provides an efficient solution to
problems connected with parallel evaluation of arithmetic expressions. It
is also used as a subroutine in some parallel graph algorithms, such as the
minimum spanning tree computation.

Several approaches to tree contraction have been developed for the PRAM
model. One method to obtain an efficient PRAM algorithm for tree con-
traction is by generalising the technique of random mating (see e.g. [LM88]).
Another possibility is to reduce the problem to list contraction by consider-
ing lists associated with the tree, such as its Euler tour. The latter approach
is followed in [GMTS88] (see also [RMMM93]). Although not originally in-
tended for the BSP model, the algorithm from [GMT88] (more precisely, its
“m-contraction” phase) can be efficiently implemented on a BSPRAM. We
sketch this implementation below.

The main idea of the method is to partition a tree of size n into edge-
disjoint subtrees of size at most n/p, called bridges. Bridges possess an
important characteristic property: each of them is attached to the tree by
at most one leaf, and by the root (unless the bridge contains the root of the
tree, and all its children). Figure 3.9 shows a tree partitioned into seven

www.manaraa.com

3.6. TREE CONTRACTION 35

bridges. Paper [GMTS88] (see also [RMMM93]) shows that such partitioning
always exists, and can be obtained by cutting the tree in at most 2p — 1
nodes. The partitioning can be computed by list contraction (specifically,
all-prefix sums computation) on the Euler tour of the tree.

The BSPRAM algorithm is as follows.

Algorithm 7. Tree contraction.

Parameter: integer n > p? - logp (respectively, n > p> - logp) for the
randomised (respectively, deterministic) version of the algorithm.

Input: tree of size n.
Output: input tree contracted to a single node.

Description. The computation is performed on an EREW BSPRAM(p, g,1).
Each processor reads an equal number of input nodes from the main mem-
ory. After this, the computation is performed in message-passing mode and
proceeds in four stages.

First stage. The tree is partitioned into bridges. The partitioning is com-
puted by several rounds of list contraction (specifically, all-prefix sums com-
putation with varying basic operation) on the Euler tour of the tree. The
list contraction is performed by Algorithms 5 or 6.

Second stage. A distribution of bridges across the processors is computed.
By this distribution, each processor is assigned either a single bridge, or
several bridges with a common root. The total size of the bridges assigned
to any single processor is at most n/p. The distribution is computed by
another all-prefix sums computation on the Euler tour of the tree.

Third stage. Each processor receives the assigned bridges and performs se-
quential tree contraction on each of them, reducing the bridges to their com-
mon root. This is made possible by the characteristic single-leaf attachment
property of the bridges.

Fourth stage. The remaining tree of size p is collected in a single processor.
This processor completes the contraction by local computation.

Cost analysis. The partitioning of the tree in the first stage and the dis-
tribution of the bridges in the second stage are computed by Algorithms 5 or
6. Their costs dominate (deterministically or with high probability) the cost
of the remaining two stages. The costs of the whole algorithm (deterministic
or expected with high probability) are

Wdet/exp - O(n/p) Hdet/exp - O(n/p) Sdet/exp = O(logp)

The algorithm is not communication-oblivious. Its slackness and granularity
are the same as in Algorithms 5 or Algorithm 6: 0ge; jexp = n/p’,y=1. A

www.manaraa.com

36 CHAPTER 3. COMBINATORIAL COMPUTATION IN BSP

Thus, tree contraction can be performed in the BSPRAM model with the
aid of list contraction; little extra effort is required. The obtained algorithm
for tree contraction has the same asymptotic costs as the list contraction
algorithm employed.

www.manharaa.com

Chapter 4

Dense matrix computation
in the BSP model

4.1 Matrix-vector multiplication

Matrix-vector multiplication is a common operation in scientific computing,
especially in iterative approximation methods. The general problem is de-
fined as computation of the product A-b = ¢, where A is an n X n matrix, and
b, ¢ are n-vectors over a semiring. The method consists in straightforward
computation of the family of linear forms

il = S Afig] bl 1<i<n (4.1)
j=1

Following (4.1), we need to set
cli] <0 fori=1,...,n (4.2)
and then compute
c[i] < c[i] + Ali, 5] -b[j] foralld,j, 1<i,j<n (4.3)

Computation (4.3) for different pairs 4, j is independent (although it requires
concurrent reading from b[j] and concurrent writing to c[i]), and therefore
can be performed in parallel.

We assume that matrix A has been initially distributed across the proces-
sors, ignoring the BSP cost of such distribution. This assumption is natural
in iterative approximation, where the cost of initial matrix redistribution can
be amortised over a long series of iterations. By assuming that matrix A is
predistributed, we concentrate on the cost of matrix-vector multiplication,
rather than the cost of input/output.

The BSPRAM algorithm for matrix-vector multiplication is a straight-
forward adaptation of the BSP algorithm from [BM93, McC95]. Matrix A is

37

www.manaraa.com

38 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSP

A c

Figure 4.1: Matrix-vector multiplication dag

A c
Figure 4.2: Matrix-vector multiplication in BSPRAM

represented by a square of size n in the integer plane (see Figure 4.1). Arrays
b, ¢ are represented by projections of the square A onto the coordinate axes.
Computation of the product A[i, j] - b[j] requires the input from node b[j],
and the output to node c[i]. In order to provide a communication-efficient
BSP algorithm, matrix A must be divided into p regular square blocks of
size n/p'/? (see Figure 4.2),

AL - AL
A= : : (4.4)

Ap2 1)) - A2 pM]

Vectors b, ¢ are divided into p'/? conforming regular intervals b[[§]], ¢[[i]] of
size n/p

/2 Computation (4.2), (4.3) can be expressed in terms of blocks as

li]] <0 fori=1,...,p"2 (4.5)

www.manharaa.com

4.2. TRIANGULAR SYSTEM SOLUTION 39

and then
clli]] « ellil] + Alli,)] - o] forall iyj, 1 <ij <p'? (4.6)

The initial distribution of A is such that every processor holds a separate
block A[[i,7]], and computes the block product A[[7, j]] - b[[j]] sequentially
by (4.2), (4.3). The algorithm is as follows.

Algorithm 8. Matriz-vector multiplication.

Parameters: integer n > p'/2; n x n matrix A over a semiring, predis-
tributed across the processors.

Input: n-vector b over a semiring.
Output: n-vector c = A - b.

Description. The computation is performed on a CRCW BSPRAM(p, g,1).
After the initialisation step (4.5), the computation proceeds in one super-
step. Each processor performs the computation (4.6) for a particular pair
i,7. In the input phase, the processor reads the block b[[j]]. Then it com-
putes the product A[[i, 7]] - b[[7]] by (4.2), (4.3). The computed block is then
written to ¢[[7]] in the main memory. Concurrent writing is resolved by ad-
dition of the written blocks to the previous content of ¢[[i]]. The resulting
vector ¢ is the product of A and b.

Cost analysis. The local computation, communication and synchronisa-
tion costs are

W=0(®"/p) H=O0(/p'?) S=0(1)

1/2
|

The algorithm is oblivious, with slackness and granularity o = v = n?/p

It can be shown that Algorithm 8 is an optimal algorithm for matrix-
vector multiplication. The proof is omitted, due to its similarity to the
optimality proof for matrix multiplication (Theorem 7 in Section 4.3).

4.2 Triangular system solution

Triangular systems of linear equations play an important role in scientific
computation. One of their most common applications is in solution of gen-
eral linear systems, where the system matrix is decomposed into a product
of triangular factors, and then the resulting triangular systems are solved.
The problem is formulated as follows: given a lower triangular matrix A and
a vector ¢, find a vector b such that A -b = ¢. For a nonsingular matrix A
over a field, the solution is b = A~!-¢. The problem can be formulated more
generally over a semiring, using the closure operation. The generalised prob-
lem is: given a lower triangular matrix A and a vector ¢ over a semiring, find

www.manaraa.com

40 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSP

A

Figure 4.3: Triangular system solution dag

the vector b = A* - ¢, assuming that the matrix closure A* = I+ A4 A% 4. ..
exists. The equivalence of the original and the generalised problem over a
field follows from the identity A* = (I — A)~!.

Explicit computation of the closure A* requires ©(n?) operations. How-
ever, there is no need to compute A* explicitly: the standard substitution
technique can be used to find b = A* - ¢ in sequential time ©(n?). Solution
of a triangular system by substitution can be viewed as a dag computation.
As before, matrix A is represented by the lower triangular part of a square
of size n in the integer plane (see Figure 4.3). Arrays b, ¢ are represented
by projections of the square A onto the coordinate axes. Computation of
the product Ali, 5] - b[j], i > j, requires the input from node A[j, j], and
the output to node A[i,i]. A node Ak, k| represents the computation of
blk] = Alk, k]* - (c[k] + doi<j<r Alk. 5] blj]). Tt requires the input from node
cli], and from all products A[k, 7] - bj], 1 < j < k. The output of a node
Alk, k] is to node b[i], and to all products A[i, k] - b[k], k < i < n.

The above computation can also be arranged as a diamond dag cubes(n)
(see e.g. [McC95]). Here, the action of a node v;j, i > j, is

www.manharaa.com

4.2. TRIANGULAR SYSTEM SOLUTION 41

0 c[1]
0 c[2]
0 c[3]
0 cl4]

Figure 4.4: Triangular system solution by a diamond dag

and the action of a node vy, is

Zl§j<k A[k,j] ’ b[j] =X v

Alk, k" - (c[k] + %)

Nodes v;;, @ < j, are not used. Figure 4.4 shows the resulting dag. It is
similar to the diamond dag cubes(n), and can be computed by Algorithm 3
with BSP cost W = O(n?/p), H = O(n), S = O(p) (see Section 3.3).

An alternative approach to triangular system solution is recursion. The
recursive algorithm works by dividing matrix A into square blocks of size
n/2,

Ay)
A 47
<A21 Az (47)

dividing vectors b, ¢ into conforming intervals of size n/2,

=) =) “

and then applying block substitution:
by A)fl - C1 by +— A;2 . (62 + Ao - bl) (49)

www.manharaa.com

42 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSP

The procedure can be applied recursively to find the vectors A}, - ¢; and
Aby - (cg + Agq - by). The resulting vector is

A ¢
A o= 1l) 4.10
‘ (50+ (c2 + Ag1 - Afje1) (4.10)

As in the previous section, we assume that matrix A has been initially
distributed across the processors at no BSP cost. This assumption is natural
in typical applications, such as solution of general linear systems, where the
matrix A is obtained from a previous computation. By assuming that the
matrix A is predistributed, we concentrate, as before, on the cost of solving
the triangular system, rather than the cost of input/output.

We now describe the allocation of block triangular systems and block
multiplication tasks in (4.9) to the BSPRAM processors. Initially, all p
processors are available to compute the triangular system solution A7, - ¢;.
There is no substantial parallelism between block triangular system solution
and block multiplication tasks in (4.9); we can only exploit the parallelism
within block multiplication. Therefore, the recursion tree is computed in
depth-first order. In each level of recursion, every block multiplication in
(4.9) is performed in parallel by all processors available at that level. Each
triangular system in (4.9) is also solved in parallel by all processors available
at that level, if the block size is large enough. When blocks become suffi-
ciently small, triangular systems are solved sequentially by an arbitrarily
chosen processor.

The initial distribution of A should allow one to perform the described
computations without redistributing the matrix. The easiest way of achiev-
ing this is to partition matrix A into p? regular square blocks A[[7,]],
0 <1i,j < p. A processor g can be assigned to hold e.g. all blocks A[[z,]
for 0 <i < p, or all blocks A[[g, 7]] for 0 < j < p, or all blocks A[[i, j]] with
i — j = q. The algorithm is as follows.

Algorithm 9. Triangular system solution.

Parameters: integer n > p3/2; n X n matrix A over a semiring, predis-
tributed across the processors.
Input: n-vector c over a semiring.
Output: n-vector b= A* - c.
Description. The computation is performed on a CRCW BSPRAM(p, g,1),
and is defined by recursion on the size of the matrix and vectors. Denote
the matrix size at the current level of recursion by m, keeping n for the orig-
inal size. Let ng = n/p. Value ng is the threshold, at which the algorithm
switches from parallel to sequential computation.

In each level of recursion, the matrix and vectors are divided into regular

blocks of size m/2 as shown in (4.7), (4.8). Then, computation (4.9) is
performed by the following schedule.

www.manaraa.com

4.2. TRIANGULAR SYSTEM SOLUTION 43

Small blocks. If 1 < m < ng, compute (4.9) on the processor that holds the
current block.

Large blocks. If ng < m < n, compute b; by recursion. Then compute Ag;-by
by Algorithm 8. Compute ¢ + Ag; - by. Finally, compute A3, - (c2 + Aa1 - by)
by recursion. Each of these computations is performed with all processors
that are available without matrix redistribution.

Cost analysis. The values for W = W)(n), H = Hp(n), S = Sp(n) can be
found from the following recurrence relations:

ng<m<n m = Ny
Wo(m) = | 2-Wy)a(m/2) + O(m?/q) O(ng)
Hy(m) = | 2- Hyp(m/2) + O(m/q"/?) Of(ng)
Sy(m) = | 2-5,(m/2) + O(1) o(1)

W=0@*/p) H=0(n) S=0(p)

The algorithm is oblivious, with slackness and granularity ¢ = v =
n/p. [|

The above analysis shows that the recursive algorithm for triangular
system solution has the same BSP cost as the diamond dag algorithm. The
use of block multiplication in the recursive algorithm does not lead to an
improvement in communication cost.

We now show that the asymptotic BSP cost of Algorithm 9 cannot be
reduced by any computation of the substitution dag (Figure 4.3).

Theorem 6. Any BSPRAM(p,g,l) computation of the triangular system
substitution dag with W = O(n?/p) requires (i) W = O(n?/p), (i) H =
Q(n), (i) S = Q(p).

Proof. (i) Trivial.

(ii) Let mo = 0. Let go be the first processor computing the node vgg. Let
m1 be the first row of G not containing a node computed by processor qq (if
every row contains a node computed by ¢g, then m; = n). Define Gy as a
subdag of G consisting of rows ¢ with 0 < i < m;y, and F} as a subdag of G
consisting of columns j with m; < j < n — 1. Let ¢; be the first processor
computing the node v, m,. Let mg be the first row of F} not containing a
node computed by processor g;. Define (G; as a subdag of F} consisting of
rows ¢ with m; <1 < mg, and F, as a subdag of F; consisting of columns
J with mg < 7 < n — 1. Repeat this process until some current m,; = n
(and therefore F,.; is empty). We have obtained a sequence of subdags
Go, ..., G, along the main diagonal of the dag G (see Figure 4.5). The
computation of each subdag can start only after each node in the previous

www.manaraa.com

44 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSP

Voo

Un—1,n—1

Figure 4.5: Proof of Theorem 6, part (1)

subdag has been computed at least once. For the purpose of a lower bound,
we will ignore all computation in a subdag after the highest-indexed node
has been computed once. We may also assume that each computed value is
used at least once.

Consider a subdag G, 0 < s < r. For each k, ms < k < mgyy1, there are
two cases:

e v, is not computed by processor gs. By construction of Gy, there
is some j, my < j < k, such that vy; is computed by processor gs.
Therefore, processor g, must communicate the value computed in vy;
to one of the processors computing vgy.

e vy is computed by processor gs. By construction of G, the node
U,k 18 DOt computed by processor g;. Therefore, processor g5 must
communicate the value computed in vg; to the processor computing

Ums+1k'

Thus, for each k, processor ¢, must send a distinct value, therefore the
communication cost of computing G is at least mg 1 — mg.

Now consider the subdag G,. For each k, m, < k < n, there are three
cases:

e vy is not computed by processor ¢,. Similarly to the first case above,

processor ¢, must communicate the value computed in some vy, m, <
j < k, to one of the processors computing vgy.

www.manharaa.com

4.3. MATRIX MULTIPLICATION 45

e v is computed by processor g, but for some j, m, < j < k, the node
vg; is not computed by processor g,. In this case, the value computed
in v; must be communicated to processor g, in order to compute vy.

e vy; is computed by processor g, for all j, m, < j < k. Since W =
O(n?/p), the total number of such values k cannot exceed n/p'/?.

1/2 yalues, processor g, must send or

Thus, for each k, except at most n/p
receive a distinct value, therefore the communication cost of computing G,
is at least n —m, —n/p'/?.

Since for every s, the computation of Gy must be completed before the

computation of Gg1q can start, the total communication cost is at least
(my —mg) + (my —mq) + -+ (n—m,) —n/p’?=n—n/p'/? =Q(n)

(7ii) The proof is a two-dimensional version of the proof for Theorem 5,
part (i74). Nodes of the main diagonal v;;, 0 < i < n, first computed in
each particular superstep, form a consecutive segment. We denote the sizes
of these segments by m,, 0 < s < S, where) i, g¢ms = n. Since the
communication within a superstep is not allowed, all nodes in the diagonal
square block of size mg spanned by the segment s must be computed by
the processor that first computes the highest-indexed node of the block.
The local computation cost of a block is therefore m2. The total cost of
local computation is bounded from below by the sum over all supersteps:
Y 0<s<S m?2. By Cauchy’s inequality,

1/2
e Y me= Y 1.ms<sv2.<z m> < s

0<s<S 0<s<S 0<s<S
Hence by assumption S > n?/W = Q(p). [|

Note that the recursive block substitution used in Algorithm 9 defines
a dag different from the ordinary substitution dag in Figure 4.3. Hence,
Theorem 6 does not cover all standard methods of triangular system solution
in BSP, in particular the method used by Algorithm 9 itself. However, it may
be possible to extend the theorem to a more general class of dags, including
the ordinary substitution and the recursive block substitution dag, as well
as the diamond dag. The standard algorithms for all the above dags have
similar BSP costs, which suggests that these algorithms may be optimal for
triangular system solution under the new extended definition.

4.3 Matrix multiplication

In this section we describe a BSPRAM algorithm for one of the most common
problems in scientific computation: dense matrix multiplication. We deal

www.manaraa.com

46 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSP

B
Js k

0y

ik

Figure 4.6: Matrix multiplication dag

with the general problem of computing the matrix product A- B = C, where
A, B, C' are n X n matrices over a semiring.

We aim to parallelise the standard ©(n?) method, asymptotically opti-
mal for sequential matrix multiplication over a general semiring (see [HK71]).
The method consists in straightforward computation of the family of bilinear
forms

Cli, k] = zn:A[i,j] - B[j, k] 1<i,k<n (4.11)
j=1

Following (4.11), we need to set
Cli,k]« 0 fori,k=1,...,n (4.12)
and then compute
Vi, j, k] < Ali,j] - B[y, k] Cli, k] < Cli, k] + Vi, j, k] (4.13)

for all 4,7, k, 1 < i,j,k < n. Computation (4.13) for different triples i, j, k
is independent (although it requires concurrent reading from A[i, j] and
B[y, k], and concurrent writing to C[i, k]), and therefore can be performed
in parallel.

The BSPRAM algorithm implementing this method is derived from the
BSP algorithm due to McColl and Valiant, described in [McC95, McC96¢].
The algorithm combines the idea of two-phase broadcast (see Section 2.2)
with symmetric three-dimensional problem partitioning, previously used e.g.

www.manharaa.com

4.3. MATRIX MULTIPLICATION 47

B

C
Figure 4.7: Matrix multiplication in BSPRAM

in [ACS90] (see also [ABG™95] for further references and experimental re-
sults). The algorithm works by a straightforward partitioning of the prob-
lem dag. Array V is represented as a cube of volume n? in integer three-
dimensional space (see Figure 4.6). Arrays A, B, C are represented as pro-
jections of the cube V onto the coordinate planes. Computation of the node
Vi, j, k] requires the input from nodes Ali, j|, B[j, k], and the output to
node C[i, k]. In order to provide a communication-efficient BSP algorithm,
the array V must be divided into p regular cubic blocks of size 77,/;01/3 (see

Figure 4.7). Such partitioning induces a partition of the matrices A, B, C

into p%/3 regular square blocks of size n/p]/?’,
AL AL
A= : : (4.14)
Allp" 2,1 - Al M)

and similarly for B, C (see Figure 4.7). Computation (4.12), (4.13) can be
expressed in terms of blocks as

Clli,k]] <0 forik=1,... p"/3 (4.15)
and then
Vi g, kl] < Alli. 5] - Bll7, Kl Clli, K]] <= C[[s, k]] + V[[i. 5, k]] (4.16)

for all 4,4, k, 1 < i,5,k < p*/3. Each processor computes a block product
V{li, 7, k]] = All4, 7]] - BllJ, k]] sequentially by (4.12), (4.13). The algorithm
is as follows.

www.manaraa.com

48 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSP

Algorithm 10. Matriz multiplication.

Parameter: integer n > p'/3.

Input: n x n matrices A, B over a semiring.
Output: n x n matrix C = A - B.

Description. The computation is performed on a CRCW BSPRAM(p, g,1).
After the initialisation step (4.15), the computation proceeds in one super-
step. Each processor performs the computation (4.16) for a particular triple
i, j, k. In the input phase, the processor reads the blocks A[[i, j]] and B[4, k]].
Then it computes the product V[[i, 7, k]] = A[[1, j]]- Bl[j, k]] by (4.12), (4.13).
The block V[[4, j, k]] is then written to C][i, k]| in the main memory. Con-
current writing is resolved by addition of the written blocks. The resulting
matrix C' is the product of A and B.

Cost analysis. The local computation, communication and synchronisa-
tion costs are

W=0@mp) H=0w/p* S=0()

2/3
|

The algorithm is oblivious, with slackness and granularity o = v = n?/p

We now prove that Algorithm 10 is an optimal parallel realisation of
the standard matrix multiplication algorithm. The following theorem was
suggested by [Pat93].

computation of the standard matriz mul-

Theorem 7. Any BSPRAM(p,g,1)
= fp), (if) H = Q(n2/p?/%), (iii) S =

tiplication dag requires (i) W
Q(1).

Proof. (i), (ii1) Trivial.

(i) Since n3 nodes are computed by p processors, there is a processor that
computes at least n?/p nodes. We apply the discrete Loomis-Whitney in-
equality (see Appendix A) to this set of nodes. Since there are at least n?/p
nodes in the set, one of the three projections of the set must contain at least
n? /p*/? nodes, therefore H = Q(n?/p*/3). [|

Algorithm 10 will serve us as a building block for more advanced matrix
algorithms developed in the following sections.

4.4 Fast matrix multiplication

In Section 4.3 we considered the problem of matrix multiplication over a
semiring. As mentioned before, the standard ©(n?) sequential algorithm
is optimal for a general semiring. However, this is not so for commutative

www.manaraa.com

4.4. FAST MATRIX MULTIPLICATION 49

rings with unit, which allow “fast” matrix multiplication algorithms. The
first such algorithm was proposed by Strassen in his groundbreaking paper
[Str69]. Since then, much work has been done on the complexity of matrix
multiplication over a commutative ring with unit. However, no lower bound
asymptotically better than the trivial Q(n?) has been found, nor is there
any indication that the current O(n?-37%) algorithm from [CW90] is close to
optimal.

The natural computational model for matrix multiplication over a com-
mutative ring with unit is the model of arithmetic circuits. It is not difficult
to see (see e.g. [HK71]) that without loss of generality, the model for matrix
multiplication can be restricted to a special class of circuits, called bilinear.
Let A, B,C be N x N matrices over a commutative ring with unit. A bilin-
ear circuit for the matrix product A - B = C' computes a family of bilinear
forms

R N N
Clikl = Yy (Z aE_;?’A[i,.ﬂ> (Z B3 Bl k]) (4.17)
r=1

t,j=1 J,k=1

for 1 < i,k < N, where 041(;;), §2), 'yi(r) are constant elements of the ring.

We assume that all R terms in (4.17) are nontrivial, i.e. for each r, there

are some (le(;) # 0, ﬁ;? # 0 and fyi(,:) # 0. The number R is called the

multiplicative complezity of the bilinear circuit.

We represent the bilinear circuit (4.17) by a dag that we call a bilinear
dag. Bach of the terms in (4.17) is represented by a node v("), 1 < r < R.
Computation of the node (") requires the input of Ali, j] for all 4,5 such

that ay(;;) # 0, and of B[j,k] for all j, k such that ﬁy,;) # 0, as well as the
output of C[i, k] for all 4, k such that 1 # 0.
Following (4.17), we need to set
Oli,k] <0 forik=1,....n (4.18)

and then compute

2 0,y 0

2 e p oD Allj] forij=1,... N

y ey 4 BUBK] forjk=1,...,N (4.19)
o) 50)

Cli, k] < Cli, k] + 430" forik=1,...,N
for all 7, 1 < r < R. Computation (4.19) for different values of r is inde-
pendent (although it requires concurrent reading from Al[i, 5], B[j, k], and
concurrent writing to z;;), therefore it can be performed in parallel.

www.manaraa.com

50 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSP

A bilinear circuit based on the standard definition of matrix product
(4.11) has multiplicative complexity R = N?. The first non-standard bilin-
ear circuit for matrix multiplication with N = 2 and R = 7 was proposed
in [Str69]. Paper [HK71] shows that for any arithmetic circuit solving the
matrix multiplication problem over a commutative ring with unit in r non-
scalar multiplications or divisions, there exists a bilinear circuit solving this
problem with multiplicative complexity at most 2r.

Any bilinear circuit for multiplying matrices of size N x N can be applied
to matrices of size n > N. The matrices A, B, C are divided into regular
square blocks of size n/N,

AL AL N
e (4.20)
AN, 1)) - A[IN,N]

and similarly for B, C. The computation (4.18), (4.19) can be expressed in
terms of blocks as

Clli,k]] <0 forik=1,....N (4.21)
and then
X" 0, Y™ 0
X0 e XO oD AL f] forij=1,...,N
YO v 4 oB[. k] forjk=1,...,N (4.22)
v x() .y
Clli, k)] < Clli, K] + VW forik=1,...,N

for all r, 1 < r < R. The procedure is applied recursively to compute the
block product V() = X() . Y ({), The resulting algorithm has sequential
complexity ©(n“), where w = logy R.

A BSP version of the algorithm was proposed in [McC96b] (see also
[KHSJ95, GvdG96, GHSJ96]). The recursion tree is computed in breadth-
first order. The algorithm uses a data distribution that allows one to com-
pute the linear forms in (4.22) in a constant number of supersteps. Each
of the matrices A, B, C is divided into regular square submatrices of size
ng X ng, where ng = n/pl/“’. The matrices are distributed across the pro-
cessors, so that the distributions of each of the above submatrices are even
and identical. Examples of a suitable distribution of A, B, C are the cyclic
distribution, or any block-cyclic distribution with square blocks of size at
most ng/p'/?.

The described data distribution allows one to compute the linear forms
in (4.22) without communication, until the current matrix size is reduced to

www.manaraa.com

4.4. FAST MATRIX MULTIPLICATION o1

ng, and p independent matrix multiplication subproblems are generated. At
this point the data are redistributed, so that each subproblem can be solved
sequentially. The algorithm is as follows:

Algorithm 11. Fast matriz multiplication.

Parameter: integer n > pl/e.

Input: n x n matrices A, B over a commutative ring with unit.
Output: n x n matrix C = A- B.

Description. The computation is performed on a CRCW BSPRAM(p, g,1),
and is defined by recursion on the size of the matrix. We denote the matrix
size at the current level of recursion by m, keeping n for the original size. Let
ng = n/p”w. Value ng is the threshold, at which the data are redistributed
among the processors.

In each level of recursion, the matrix is divided into N? regular square
blocks of size m/N as shown in (4.20). We perform the initialisation (4.21),
and then the computation (4.22) by the following schedule.

Small blocks. If 1 < m < ng, compute (4.22) sequentially on the processor
where the data are held.

Large blocks. If ng < m < n, generate R multiplication subproblems by ex-
ecuting the first three lines of (4.22) in parallel for all 7. Solve the multipli-
cation subproblems in parallel by R simultaneous recursive calls. Compute
the result by executing the final line of (4.22) in parallel for all ». The
data distribution ensures that the linear steps can be performed without
communication.

In the above description, the data are implicitly redistributed when the
matrix size m passes the threshold ng. At this stage, the recursion tree is
evaluated in breadth-first order. Therefore, the redistribution occurs only
twice first on the down-sweep, then on the up-sweep of the recursion tree.

Cost analysis. The values for W = W(n), H = H(n), S = S(n) can be
found from the following recurrence relations:

ngp<m<n m=nyg
W(m) = | R-W(m/N) O(ng/p)
H(m)= | R-H(m/N) O(nj/p)

S(m)= | S(m/N) 0(1)
as
W =0n/p) H=0@n*p*>") S§=0(1)
The algorithm is oblivious, with slackness o = 77,2/[)2“’71 and granularity
ry:n2/p2“’71+1. |

www.manaraa.com

52 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSP

We now prove that Algorithm 11 is an optimal parallel realisation of
the fast matrix multiplication algorithm. In contrast with standard matrix
multiplication, we do not have any single dag underlying the computation.
A statement that any BSP implementation of a bilinear circuit with param-
eter w would require H = Q(NQ/pQ“’J) is obviously invalid, since we might
be able to emulate such a circuit by a circuit with w; < w, by introducing
“spurious” terms in (4.17) (e.g., duplicating other terms). The resulting cir-
cuit could be computed in H = O(NQ/p2“f1) = o(NQ/pQ“F]). Thus, a lower
bound on communication cost of a general bilinear matrix multiplication
circuit is closely related to the lower bound on its computation cost, which
is beyond the reach of current complexity theory. Therefore, we restrict our
analysis to circuits obtained by recursive application of a fixed basic circuit
(4.17). The analysis can be easily extended to the case where different lev-
els of recursion are defined by different basic circuits of the form (4.17), but
all such circuits must have a fixed maximum size N and a fixed minimum
multiplicative complexity R (and therefore a fixed minimum exponent w).

The dag for recursive multiplication of matrices of size n based on the
circuit (4.17) consists of logn/log N levels. Each level is formed from dis-
joint copies of the bilinear dag corresponding to the basic circuit. Algo-
rithm 11 performs input/output at level 0, and data redistribution at level

logp/ log R.
We now prove the optimality of Algorithm 11.

Theorem 8. Any BSPRAM(p, g,l) computation of the recursive matriz mul-
tiplication dag based on (4.17) requires (i) W = Q(n¥ /p), (i) H = Q(n?/p> "),
(ii1) S = Q(1).

Proof. (i), (ii1) Trivial.
(ii) Induction on p and n.

Induction base (p = 1, arbitrary n). Trivial.

Inductive step (p — R-p, n — N -n). The outermost level of the dag
consists of n? disjoint copies of the basic dag. The rest of the dag consists
of R disjoint copies of the fast matrix multiplication dag of size n. For
each of these copies, the communication cost of Algorithm 11 is optimal.
The outermost level is computed by Algorithm 11 without communication,
therefore the overall communication is optimal. |

It should be noted that for standard matrix multiplication (a basic dag
with N = 2, R = 8), Theorem 8 is not a replacement for the optimality
proof of Algorithm 10 (Theorem 7). This is because the computation of the
standard matrix multiplication dag (Figure 4.6) does not have to follow the
recursive pattern of fast matrix multiplication. Therefore, the statement of
Theorem 7 is more general than Theorem 8 applied to the dag based on
standard 2 x 2 matrix multiplication.

www.manaraa.com

4.5. GAUSSIAN ELIMINATION WITHOUT PIVOTING 53

4.5 Gaussian elimination without pivoting

This section and the next describe a BSPRAM approach to Gaussian elimi-
nation, a method primarily used for direct solution of linear systems of equa-
tions. More generally, Gaussian elimination and its variations are applied
to a broad spectrum of numerical, symbolic and combinatorial problems.

In this section we consider the simplest form of Gaussian elimination,
which does not involve the search for pivots. This basic form of elimination
is not guaranteed to produce correct result, or terminate at all, when per-
formed on arbitrary matrices. However, it works well for matrices over some
particular domains, such as closed semirings, or for matrices of some partic-
ular types, such as symmetric positive definite matrices over real numbers.
We will consider pivoting in Sections 4.6 and 4.7.

Gaussian elimination can be described in many ways. In this section
we consider it as LU decomposition of a real matrix. Chapter 5 presents
another form of Gaussian elimination without pivoting, used for algebraic
path computation and matrix inversion.

Let A be an nxn real diagonally dominant or symmetric positive definite
matrix. The LU decomposition of A is A = L - U, where L is an n X n
unit lower triangular, and R is an n x n upper triangular matrix. This
decomposition can be computed in sequential time O(n?) by plain Gaussian
elimination, or in time O(n“) by block Gaussian elimination, using fast
matrix multiplication.

The parallel complexity of Gaussian elimination has been extensively
studied in many models of parallel computation. Paper [McC95] proposes
to reduce the problem to the computation of a cube dag cubes(n). The
reduction is similar to the one described in Section 4.2 for triangular sys-
tem solution. The BSP cost of the resulting computation is W = O(n?/p),
H = O(n?/p'/?), S = O(p'/?) (see Section 3.3). The cube dag method is
straightforward for LU decomposition, and can be easily adapted to other
forms of Gaussian elimination, such as QR decomposition by Givens rota-
tions.

A lower communication cost for LU decomposition can be achieved by
an alternative algorithm, based on recursive block Gauss—Jordan elimination
(see e.g. [GPS90, DHS95]). This standard method was suggested as a means
of reducing the communication cost in [ACS90] (for the transitive closure
problem). Given a nonsingular matrix A, the algorithm produces the LU
decomposition A = L - U, together with the inverse matrices L~ and U~!.
The algorithm works by dividing the matrices A, L, U into square blocks of
size n/2,

A A12> <L11 . > (Un U12>
A=L -U: = 4.23
<A21 A Lo1 Lo - U (4.23)

where the dot - indicates a zero block. First we find the LU decomposition

www.manaraa.com

o4 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSP

of the block Ay; = Ly - Uyy, along with the inverse blocks Lfll and Uﬁl,
by applying the algorithm recursively. Then we apply block Gauss—Jordan
elimination to find the blocks Loy, Ujo:

Loy < Ao UL Upp + Ly - A (4.24)

A second recursive application of the algorithm yields the LU decomposition
A9y — Loy - Ujg = L9y - Ugg, and the inverse blocks L;Q], U{Q]. We complete
the computation by taking

1 -1 -1 -1
L '= Ly ' O Upyp Uy Uiz Uy
—Lyy - Loy - Ly Loy : Uss'

We now describe the allocation of block LU decomposition tasks and
block multiplication tasks in (4.24) (4.25) to the BSPRAM processors. Ini-
tially, all p processors are available to compute the LU decomposition. There
is no substantial parallelism between block decomposition and block multi-
plication tasks in (4.24) (4.25); we can only exploit the parallelism within
block multiplication. Therefore, the recursion tree has to be computed in
depth-first order. In each level of recursion, every block multiplication in
(4.24)—(4.25) is performed in parallel by all processors available at that level.
Each block LU decomposition is also performed in parallel by all processors
available at that level, if the block size is large enough. When blocks become
sufficiently small, block LU decomposition is computed sequentially by an
arbitrarily chosen processor.

The depth at which the algorithm switches from p-processor to single-
processor computation can be varied. This variation allows us to trade off
the costs of communication and synchronisation in a certain range. In order
to account for this tradeoff, we introduce a real parameter «, controlling the
depth of parallel recursion. The algorithm is as follows.

Algorithm 12. Gaussian elimination without pivoting.
Parameters: integer n > p; real number o, amin = 1/2 < @ < 2/3 = amax-

Input: n x n real matrix A; we assume that A is diagonally dominant or
symmetric positive definite.

Output: decomposition A = L-U, where L is an n X n unit lower triangular
matrix, and U is an n x n upper triangular matrix.

Description. The computation is performed on a CRCW BSPRAM(p, g,1),
and is defined by recursion on the size of the matrix. Denote the matrix size
at the current level of recursion by m, keeping n for the original size. Let
ng = n/p®. Value ng is the threshold, at which the algorithm switches from
parallel to sequential computation.

www.manaraa.com

4.5. GAUSSIAN ELIMINATION WITHOUT PIVOTING 95

In each level of recursion, the matrix is divided into regular square blocks
of size m/2 as shown in (4.23). Then, computation (4.24)—(4.25) is per-
formed by the following schedule.

Small blocks. 1f 1 < m < ng, choose an arbitrary processor from all currently
available, and compute (4.24) (4.25) on that processor.

Large blocks. If ng < m < n, compute Liy, Upq, Lﬁl, Ufll by recursion.
Then compute Loy, Uyg and Agg — Loy - Uyo by Algorithm 10. After that,
compute Log, Usg, L;QI, U{QI by recursion. Finally, compute 7L2721 - Loy -Lﬁl
and —Uy;' - Upg - Uy' by Algorithm 10. Each of these computations is
performed with all available processors. The result is the decomposition
(4.23).

Cost analysis. The values for W = W(n), H = H(n), S = S(n) can be
found from the following recurrence relations:

ng<m<mn m = 1y
W(m) = | 2-W(m/2) + 0 fp) O(m)
H(m) = | 2. Hm/2) + O(m?/p/?) O(n3)
S(m)= |2-S(m/2)+0(1) 0(1)
as
W=0("/p) H=0®*/p") §=00p"
The algorithm is oblivious, with slackness and granularity ¢ = v =
n?/p2/3.]

For @ = amin = 1/2, the cost of Algorithm 12 is W = O(n?/p),
H = O(nQ/p1/2), S = O(p'/?). This is asymptotically equal to the BSP
cost of the cube dag method from [McC95]. For o = amax = 2/3, the
cost of Algorithm 12 is W = O(n®/p), H = O(n?/p*?), § = O(p*?).
In this case, the communication cost is as low as in matrix multiplication
(Algorithm 10). This improvement in communication efficiency is offset by
a reduction in synchronisation efficiency. For large n, the communication
cost of Algorithm 12 dominates the synchronisation cost, and therefore the
communication improvement should outweigh the loss of synchronisation
efficiency. This justifies the use of Algorithm 12 with a = am.x = 2/3.
Smaller values of «, or the cube dag algorithm, should be considered when
the problem is moderately sized.

As in triangular system solution (Section 4.2), Gaussian elimination
without pivoting cannot be defined as a computation of any particular dag.
The cube dag method, ordinary elimination and block recursive elimina-
tion produce different dags. A lower bound on synchronisation cost can be
proved for a general class of dags, including the three subclasses above. A
proof, identical to the proof for the cube dag (Theorem 5, part (iii)), gives

www.manaraa.com

56 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSP

the bound S = Q(p'/?), provided that W = O(n?/p). A lower bound on the
communication cost can be obtained by the standard method of reducing
the matrix multiplication problem to LU decomposition. For any n x n real
matrices A, B, the product A - B can be computed by LU decomposition of

a 2n X 2n matrix:
I B (I - I B
A T) \A I - I—-A-B

Therefore, the lower bound H = Q(n?/p*/3) for standard matrix multi-
plication (Theorem 7) holds also for standard Gaussian elimination with-
out pivoting, which must be appropriately defined to exclude Strassen-type
methods.

Fast matrix multiplication can be used instead of standard matrix mul-
tiplication for computing block products. The modified algorithm is as fol-
lows.

Algorithm 13. Fast Gaussian elimination without pivoting.

Parameters: integer n > p3/¥; real number o, amin = 1/(w—1) <a<
2/w = amax-

Input: n x n real matrix A; we assume that A is diagonally dominant or
symmetric positive definite.

Output: decomposition A = L-U, where L is an n X n unit lower triangular
matrix, and U is an n X n upper triangular matrix.

Description. The computation is identical to Algorithm 12, except that
block multiplication is performed by Algorithm 11, rather than Algorithm 10.
As before, ng = n/p® is the threshold between parallel and sequential com-
putation.

Cost analysis. The values for W = W(n), H = H(n), S = S(n) can be
found from the following recurrence relations:

ng<m<n m = nyg
Win) = | 2 Wn/D) + 06 /p) _ O(m)
H(m)= | 2-H(m/2)+O(m?/p*) O(n})
S(m)= | 2-S(m/2)+0(1) 0(1)
as
W=0®n"/p) H=0@mn/p*) S=0(@p"
The algorithm is oblivious, with slackness and granularity ¢ = v =
n2/p2ur1_ m

As w approaches the value of 2, the range of parameter a becomes tighter.
If an O(n?) matrix multiplication algorithm is eventually discovered, the
tradeoff between H and S will disappear.

www.manaraa.com

4.6. NESTED BLOCK PIVOTING AND GIVENS ROTATIONS o7

4.6 Nested block pivoting and Givens rotations

In this section we extend the results of the previous section, obtaining an
efficient BSP algorithm for certain forms of Gaussian elimination with piv-
oting.

Let A be an n x n matrix over a finite field. We assume that the inverse
of a nonzero field element can be computed in time O(1). Plain Gaussian
elimination without pivoting may fail to find the LU decomposition of A,
because some diagonal elements may be zero initially, or become zero during
elimination. Block Gaussian elimination without pivoting may fail for a
similar reason, if some diagonal blocks are singular or become singular during
elimination. A particular feature of computation over a finite field is that
any nonzero element, or any nonsingular block, can serve as a pivot. As we
show below, this allows us to use a restricted version of pivoting, proposed
in [Sch73] (see also [BCS97, section 16.5]). We call this technique nested
block pivoting, since its approach is to find a sequence of nested nonsingular
blocks, or, if the original matrix is singular, a sequence of nested blocks of
maximum possible rank. A similar approach applies to computation of the
QR decomposition of a real matrix by Givens rotations.

Another pivoting method suitable for block triangular decomposition has
been proposed in [BH74]. Since the approach of [BH74] requires a search for
the pivot along a matrix row, its BSP cost is higher than the cost of nested
block pivoting.

To describe nested block pivoting, we consider Gaussian elimination on
rectangular matrices of a special form. Let ((}) be a 2n x n matrix over a
finite field. Here A is an arbitrary n X n matrix, and V an upper triangular
n X n matrix. Matrices A, V may not have full rank. The problem consists
in finding a full-rank 2n x 2n transformation matrix (g g), and an n X n
upper triangular matrix U, such that

(r 6) ()=))

This problem is closely related to the problem of transforming ({}) to row
echelon form (see [BCS97]).

As in the previous section, the problem can be solved by the cube dag
method, using the standard elimination scheme (see e.g. [Mod88, Ort88]).
Alternatively, we can compute the decomposition (4.26) by a recursive pro-
cedure. This procedure differs from the one described in Section 4.5 in that
we cannot compute block inverses. Matrices (2 E), (1), (V) are parti-
tioned into regular square blocks of size n/2,

D1 D2 Enn Epp Ay Ag U Un2

Doy Dy Eo9y Eoo An Ap | _| - Ux (4.27)
Fi1 Fio Gn G2 Vit Vig : : '
For Fyy Go1 Gaa - Voo

www.manaraa.com

o8 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSP

First the algorithm is applied recursively to n x n/2 matrix (“4}1211) Taking

the decomposition
<P11 P12> <A21> _ <Y11)
Py Py Via .

we obtain
I A Ap A A
Py Pio A Ap | _ Y Yo (4.98)
Py Py Vit Vig - Yo '
I - Va Voo
where

<P11 P12> <A22> _ <Y12)
Pgl P22 V12 Y22
Aqr

In the next stage we apply the algorithm recursively to matrices (Yn) and

(122), obtaining
Qu Q12 - ' A A Ui Ur2
Q21 Q2 : Yiin Yo VA
= 4.29
: Q33 Q34 - Yoo VA (4.29)
Qu3 Qua - Vo . :
Finally, we apply the algorithm recursively to matrix (2;), obtaining
r - S Uin Uis Uin Uis
Ri1 Rip - Rt U.22 (4.30)

Ro1 Ray - - Za

. i . .
Matrix (£ &) can now be computed as the product of the three transforma-
tion matrices from (4.28) (4.30). The base of recursion is the elimination
on a 2 x 1 matrix. If both matrix elements are zero, the decomposition
is trivial. Otherwise, an arbitrary nonzero element is used as a pivot. If
the other element is also nonzero, it is eliminated by subtracting the pivot
multiplied by an appropriate scaling factor.

As opposed to Gaussian elimination without pivoting, the recursive pro-
cedure (4.28) (4.30) is not efficient when implemented in BSP, due to a
large number of recursive calls. However, we can improve the efficiency by
changing the order in which low-level block operations are executed. We
represent the block elimination order defined by (4.28) (4.30) schematically
as

www.manharaa.com

4.6. NESTED BLOCK PIVOTING AND GIVENS ROTATIONS 59

Here 1 denotes the elimination of Vi1, 2 denotes the elimination of Y77 and
Vi, and 3 denotes the elimination of Zyy. Vertical bars | represent block
multiplication. In this schematic representation, a block elimination can
be performed after the block immediately below has been eliminated, and
block multiplication immediately to the left has been performed. A block
multiplication can be performed after all blocks immediately to the left have
been eliminated.

For 4 x 4 matrices, the elimination scheme of the recursive algorithm is

— N B Ot
N W ot O
=~ ot = 0o
[N

Here the length of the vertical bars corresponds to the size of matrices
being multiplied. Note that the elimination 4 in the bottom row has to
be computed after the matrix multiplication immediately on the left, and
therefore after elimination 3. However, elimination 4 in the left column can
be computed immediately after elimination 2, in parallel with elimination 3.
In general, we can eliminate any block as soon as the result of multiplication
immediately on its left is available. The optimised elimination scheme is

—_— N W
N W &~ O
= Ot O
R

Similarly, the original, recursive elimination scheme for 8 x 8 matrices is

14 |15 17 |18 23 |24 26 |27
13| 14| 16|17 [22] 23] 25|26
11214 |15 | 20| 21 | 23 | 24
1011 13]14]19]20] 2223
568 |oftafs|rr]18
a5 | 7|8 |13]1af16]17
23|56 [tn]12]14]15
L2 |45 [to]1n]13]|14

www.manaraa.com

60 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSP

and the optimised scheme is

1112|1617 [1920
1011 [15]16] 18] 19
| 10| 14| 15|17] 18
| 9 | 13| 14]16]17
| 8 |12]|13]15]16
| 7 |11]12]|14]15
| 6 |10]11]13]14
| 5

8|9
7|8
6|7
56
45
34
2|3
1] 2 9 |10]12 |13

9
8
7
6
5
4

This method can be generalised to arbitrary matrix sizes. Decomposition of
a 2n x n matrix can be computed by an r X r optimised elimination scheme,
where each entry corresponds to a block of size ng = n/r. We call such
blocks elementary. Elimination within an elementary block is performed
sequentially by a single BSPRAM processor.

We now describe the allocation of elementary block decomposition tasks
and matrix multiplication tasks to the BSPRAM processors. The compu-
tation alternates between decomposition of elementary blocks and parallel
multiplication of the resulting matrices. Each of these stages is implemented
by a superstep. In each decomposition stage, at most one entry from every
column of the elimination scheme is computed. In each matrix multiplication
stage, at most one matrix multiplication from every column is performed.
For any k, we allocate p/k processors to multiplication of matrices of size

The resulting algorithm is similar to Algorithm 12, in that a real pa-
rameter « controls the depth at which block decomposition is performed
sequentially. We use an optimised elimination scheme of size r = p®*. As
before, variation of « results in a tradeoff between the communication and
synchronisation costs.

Algorithm 14. Gaussian elimination with nested block pivoting.

Parameters: integer n > p'*¢ for some constant ¢ > 0; real number «,

. — 1, loglogp 2 loglogp _
Omin = 5 + 21log p <a< 3+ logp Omax-

Input: n X n matrix A over a finite field.

Output: decomposition D - A = U, where D is a full-rank n x n matrix,
and U is an n X n upper triangular matrix.

Description. The computation is performed on a CRCW BSPRAM(p, g,1).
We apply the optimised block elimination procedure to the matrix (6‘) De-
note the matrix size at the current level of recursion by m, keeping n for the
original size. Let ng = n/p®. Value ny is the size of elementary blocks.

www.manaraa.com

4.6. NESTED BLOCK PIVOTING AND GIVENS ROTATIONS 61

We decompose the matrix using an optimised elimination scheme of size
r = p®, as described above. Decomposition of elementary blocks is computed
sequentially. Matrix multiplication is performed by Algorithm 10.

Cost analysis. The value for S = S(n) can be found from the following
recurrence relation:

ng<m<n m = Ny

Stm) = | 2-S(m/2) + 0(1) O(1)

as S = O(p* - logp).

Since r = p® < p, all elementary block decompositions occuring in the
same superstep can be performed in parallel. The total cost of elementary
block decompositions is

Wy = Sp-O(nj) = O(n® - log p/p*®)
Hy =Sy O(n§) = O(n® - log p/p®)
So = O(p” - logp)

The total computation and communication cost of all matrix multiplica-
tions is dominated by the cost of the largest matrix multiplication. Indeed,
in each matrix multiplication stage, we compute at most one matrix product
of size n, at most two matrix products of size n/2, etc. In general, for any
k we compute at most k£ matrix products of size k. Every such product
is computed on p/(2k) processors. Let n/K be the size of the largest ma-
trix product occuring in a particular matrix multiplication superstep. The
computation cost of this superstep is at most

(/K (n)@K))? (n)(4K))? o
O(p/K " pJCK) " p/(K) “'”)‘O(K?-p)

and the synchronisation cost is at most

(n/K)? (n/2K)? (n/4K)? B n?
O((p/K)2/3 Y /2K paryeE U) =0z 77)

where LI denotes the maximum operator. There are at most two supersteps
with K = 1, at most four supersteps with K = 2, etc. In general, there are
at most 2K supersteps for any particular K. Therefore, the total cost of
matrix multiplications is

n? n? n3
Wy O(p + 22-p+ 42-p+) O(n’/p)
H =0 n 2 n” 4 n? — O(n? p/3
' p2/3+ '24/3.p2/3+ '44/3_p2/3+"' = O(n”/p™")

S1 = O(p” -logp)

www.manaraa.com

62 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSP

Since Wy = O(W1), Hy = O(Hy), the total BSP cost is
W=0(/p) H=0(n" logp/p®) §=0(p"logp)

The algorithm is oblivious, with slackness and granularity ¢ = v =
n?/p2/3.]

For @ = @min, the cost of Algorithm 14 is W = O(n®/p), H = O(n? -
(logp)l/Q/pl/Q), S = ()(pl/2 . (10gp)3/2). This is slightly higher than the
BSP cost of the cube dag method. For a = apax, the cost of Algorithm 14
is W = 0(n®/p), H=0(n?/p*/?), 8 = ()(1)2/3 - (logp)?). In this case the
communication cost is as low as in matrix multiplication (Algorithm 10) and
Gaussian elimination without pivoting (Algorithm 12). This improvement
in communication efficiency is offset by a reduction in synchronisation effi-
ciency. Considerations similar to the ones discussed in Section 4.5 apply to
the choice of a particular value of «.

Since the cube dag method is slightly better than Algorithm 14 for a =
Qmin, one might expect that a lower BSP cost may be achieved by a hybrid
algorithm, performing elimination by an optimised scheme at the higher
level, and decomposing elementary blocks by the cube dag algorithm at the
lower level. This would be straightforward if Algorithm 14 were a purely
recursive algorithm, similar to Algorithm 12. However, since Algorithm 14
computes the elimination scheme in an optimised non-recursive order, the
problem of finding an efficient hybrid algorithm remains open.

To reduce slightly the cost of local computation and communication, one
can use fast matrix multiplication instead of standard matrix multiplication
for computing block products. In this case the recursion has to be deeper,
therefore the synchronisation cost will slightly increase.

Algorithm 14 can be used to compute the QR decomposition of a real

matrix. For a 2 x 1 matrix (%), decomposition (4.26) is given by the Givens

(5 90)=0)

where ¢ = a/(a® +v?)'/?, s = v/(a® + v*)"/?, u = (a® +v?)"/2. Recur-
sive equations (4.28)—(4.30) and Algorithm 14 are then directly applied to
computation of the QR decomposition of a real matrix by Givens rotations.

rotation

4.7 Column pivoting and Householder reflections

In Sections 4.5 and 4.6, we considered Gaussian elimination without piv-
oting or with nested block pivoting, which is suitable for certain numerical
and combinatorial computations on matrices. However, most numerical ma-
trix problems require that in each step, the pivot is chosen globally within

www.manaraa.com

4.7. COLUMN PIVOTING AND HOUSEHOLDER REFLECTIONS 63

a column (column pivoting), or even across the whole matrix (full pivot-
ing). For an arbitrary nonsingular real matrix, only full pivoting guarantees
numerical stability, and column pivoting is stable on the average. We also
considered QR decomposition by Givens rotations, which is similar to nested
block pivoting. An alternative method of QR decomposition, Householder
reflections, is similar to column pivoting.

We consider Gaussian elimination with column pivoting on rectangular
matrices. Let A be an r x n real matrix, r > n. Matrix A may not have
full rank. The problem consists in finding a full-rank r x r transformation
matrix D, and an r X n upper triangular matrix U, such that D- A ="U.

It is easy to obtain a BSPRAM algorithm for Gaussian elimination with
column pivoting, if we regard operations on columns (column elimination
and matrix-vector multiplication) as elementary operations, which are per-
formed sequentially. In this case the data dependency between elementary
tasks is similar to that of triangular system solution. Therefore, we can apply
either of the two methods described in Section 4.2: diamond dag algorithm,
or recursive substitution. Since an elementary data unit is a column of size
r, and both elementary operations have sequential time complexity O(r),
the local computation and communication costs of the resulting algorithm
are equal to O(r) times the cost of the original triangular system algorithm.
For square matrices (r = n) this yields W = O(n3/p), H = O(n?). The
synchronisation cost S = O(p) remains unchanged.

An alternative method is to combine the updates from several column
eliminations, using matrix multiplication to perform these updates (see e.g.
[Bre91]). Such an approach is often used in parallel numerical software,
e.g. in the ScaLAPACK library (see [CDO196]). Here we give a BSPRAM
algorithm based on this approach.

As before, the algorithm can be described recursively. A similar recursive
procedure for sequential computation has been introduced in [Tol97]. We
partition matrices D, A, U into rectangular blocks

(Dn D]Z) (An A]Q) _ (Un U]Z) (4.31)
Dy Do) \ Ao Aa - U ’
where blocks Dy, Aq1, Ayg, Ur1, Uyg are n/2 x n/2, and the sizes of other

blocks conform to the above. First, the algorithm is applied recursively to
matrix (ﬂ;) Taking the decomposition

(Pn P12> (An> _ (Un>
Py Py) \ Ay .

Py Pio\ (An A12> <U11 U12>
— 4.32
<P21 P22> <A21 A - Yoo (432)

we obtain

www.manaraa.com

64 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSP

where

<P11 P12> <A12> _ <U12>
Py Py) \Axp Yo

Then we apply the algorithm recursively to matrix Y9, obtaining

I U U2 _ (Unn Uy
(' Q22> (: Y22> B < : U22> (4.33)

Matrix D can now be computed as the product of the two transformation
matrices from (4.32) (4.33). The base of recursion is the elimination on
a single column, which involves the search of the largest column element
as a pivot, and elimination of all other elements by subtracting the pivot
multiplied by an appropriate scaling factor.

We now describe the allocation of block decomposition tasks and block
multiplication tasks in (4.32) (4.33) to the BSPRAM processors. Initially,
all p processors are available to compute the decomposition D - A = U.
There is no substantial parallelism between block decomposition and block
multiplication tasks in (4.32)—(4.33); we can only exploit the parallelism
within block multiplication. Therefore, the recursion tree has to be com-
puted in depth-first order. In each level of recursion, every block multipli-
cation in (4.32)—(4.33) is performed in parallel by all processors available at
that level. Each block decomposition is also performed in parallel by all pro-
cessors available at that level, if the block size is large enough. When blocks
become sufficiently small, block decomposition is computed sequentially by
an arbitrarily chosen processor.

The resulting algorithm is as follows.

Algorithm 15. Gaussian elimination with column pivoting.
Parameter: integer n > p.
Input: r x n real matrix A, r > n.

Output: decomposition D-A = U, where D is a full-rank r x r matrix, and
U is an r X n upper triangular matrix.

Description. The computation is performed on a CRCW BSPRAM(p, g,1),
and is defined by recursion on the size of the matrices. Denote the matrix
width at the current level of recursion by m, keeping n for the original width.
Let ng = n/p. Value ng is the threshold, at which the algorithm switches
from parallel to sequential computation.

In each level of recursion, the matrices are divided as shown in (4.31).
Then, computation (4.32) (4.33) is performed by the following schedule.

Small blocks. If 1 < m < ng, choose an arbitrary processor from all currently
available, and compute (4.32)—(4.33) on that processor.

www.manaraa.com

4.7. COLUMN PIVOTING AND HOUSEHOLDER REFLECTIONS 65

Large blocks. If ng < m < n, compute Uyy, Ujs by recursion. Then compute
Y2 by Algorithm 10. Finally, compute Uy by recursion. Each of these
computations is performed with all available processors. The result is the
decomposition (4.31).

Cost analysis. The value for S = S(n) can be found from the following
recurrence relation:

ng<m<mn m = nyg

S(m) = | 2-8(m/2) + O(1) O

as S = O(p).

The local computation cost W and communication cost H are dominated
by the decomposition of elementary blocks: W = O(p) - O(r’ng), H =
O(p) - O(rng). For square matrices (r = n) we obtain:

W=0@m%/p) H=0m> S§=0(p)

The algorithm is communication-oblivious, with slackness and granular-
ity o =y = n?/p>. [|

The above analysis shows that the recursive algorithm for column pivot-
ing has the same BSP cost as the column-based triangular system algorithm.
Using block multiplication for matrix updates does not improve the asymp-
totic communication cost of column pivoting. A straightforward extension
of the method is block column pivoting, where pivot search is performed
locally in a rectangular block of columns, instead of a single column, thus
improving numerical properties of the algorithm.

In contrast with previous pivoting methods, using fast matrix multipli-
cation in column pivoting will reduce slightly the cost of local computation,
but the communication cost will remain unchanged. As before, the recur-
sion will have to be deeper, therefore the synchronisation cost will slightly
increase.

Algorithm 15 can be used to compute the QR decomposition of a real
matrix by Householder reflections. In this method, a column w is eliminated
by a symmetric orthogonal transformation matrix P = I —2v-v", where v is
a unit vector constructed from column w« in linear time. Recursive equations
(4.32) (4.33) and Algorithm 15 are then directly applied to computation of
the QR decomposition of a real matrix by Householder reflections.

Finally, we consider Gaussian elimination with full pivoting. In this
method, pivot search is done across the whole matrix on each elimination
stage. For real matrices, full pivoting guarantees numerical stability; how-
ever, in practice it is used less frequently than column pivoting, due to a
higher computation cost.

In contrast with matrix problems considered previously, there is no
known block method for Gaussian elimination with full pivoting. The only

www.manaraa.com

66 CHAPTER 4. DENSE MATRIX COMPUTATION IN BSP

viable approach to this problem seems to be fine-grain. Consider Gaus-
sian elimination with full pivoting on an n X n matrix. The matrix is
partitioned across the processors by regular square blocks of size n/pl/Q.
Each of n elimination stages is implemented by O(1) supersteps. The
cost of each stage is dominated by the cost of a rank-one matrix update:
w = O(n?/p), h = O(n/p'/?). The total BSP cost of the algorithm is there-
fore W = O(n) -w = O(n®/p), H = 0O(n) - h = O(n?/p'/?), S = O(n). Note
that the communication cost H is lower than that of Algorithm 15, but the
synchronisation cost S is much higher. The described fine-grain algorithm
can be applied to Gaussian elimination with column pivoting, in which case
it presents a discontinuous communication-synchronisation tradeoff with Al-
gorithm 15.

www.manharaa.com

Chapter 5

Graph computation
in the BSP model

5.1 Fast Boolean matrix multiplication

Graph computation is a large and particularly well-studied area of combina-
torial computation. It has a strong connection to matrix computation, since
a graph can be represented by its adjacency matrix. Many graph algorithms
have matrix analogues, and vice versa.

In the simplest case of an unweighted graph, the adjacency matrix is
Boolean. In this section, we consider the problem of multiplying two n x n
Boolean matrices, using conjunction A and disjunction V as multiplication
and addition respectively. The straightforward method is standard matrix
multiplication, of sequential complexity ©(n?). There are also subcubic
methods, including Kronrod’s algorithm (also known as Four Russians’ al-
gorithm, see e.g. [AHU76]), and a recent algorithm from [BKM95]. The
lowest known exponent is achieved by fast Strassen-type multiplication. In
this method, the Boolean matrices are viewed as (0, 1)-matrices over the ring
of integers modulo n+1 (see e.g. [Pat74, AHU76|, [LD90, pages 537-538], or
[CLRY0, pages 747 748]). As shown in Section 4.4, the fast matrix multipli-
cation algorithm has BSP cost W = O(n¥/p), H = O(n?/p*/*), S = O(1).
For matrices over a general semiring, these cost values are independently
optimal (Theorem 8). It is natural to ask whether the asymptotic com-
munication cost H can be reduced by using properties specific to Boolean
matrices.

In this section we give a positive answer to this question, describing an
algorithm with communication cost H = O(n?/p). The proposed algorithm
is not practical, since it works only for astronomically large matrices, and
involves huge constant factors. However, the method is of theoretical im-
portance, because it indicates that the lower bound H = Q(n?/p*/*), which
is easy to prove for a general semiring, cannot be extended to the Boolean

67

www.manaraa.com

68 CHAPTER 5. GRAPH COMPUTATION IN BSP

case.

We first give an intuitive explanation of the method. The main idea is
to find the high-level structure of the two matrices and of their product.
As soon as this basic structure is determined, the full structure can be
found with little extra communication. In contrast with the standard and
Strassen-type methods, the resulting algorithm is non-oblivious.

Let us consider the standard ©(n?®) computation of the product AN B =
C, where A, B, C are square Boolean matrices of size n. As in Section 4.3,
we represent the n3 computed Boolean products by a cube of volume n? in
integer three-dimensional space. The proposed algorithm performs commu-
nication only on matrices containing few ones, or few zeros. A matrix with m
ones (or m zeros) can be communicated by sending the m indices of the ones
(respectively, the zeros). If A contains at most n?/p ones, the multiplica-
tion problem can be solved on a BSPRAM in W = O(n?/p), H = O(n?/p),
S = O(1) by partitioning the cube into layers of size n/p x n x n, parallel to
the coordinate plane representing matrix A. Symmetrically, if B contains
at most n2/p ones, the problem can be solved at the same cost by a similar
partitioning into layers of size n x n/p x n, parallel to the coordinate plane
representing matrix B. If both A and B are dense, we partition the cube
into layers of size n x n x n/p, parallel to the coordinate plane representing
matrix C'. Assuming for the moment that A and B are random matrices,
it is likely that the partial product computed by each of the layers contains
at most n?/p zeros. Again, the problem can be solved in W = O(n3/p),
H = O(n?/p), S = O(1). The remaining case is when A and B have rela-
tively many ones, but C still has relatively many zeros. We argue that in
this case the triple A, B, C must have a special structure that allows us
to decompose the computation into three matrix products corresponding to
the three easy cases above. Computation of this structure requires no prior
knowledge of C. Tts cost is polynomial in n (more precisely, of order n“),
but exponential in p.

The structure of a Boolean matrix product is best described in the lan-
guage of graph theory. To expose the symmetry of the problem, we modify
it as follows. For a Boolean matrix X, let X denote the Boolean complement
to the transpose of X, i.e. X[i,j] = X[j,4]. We replace C' by C, and look
for a C such that A A B = C. Boolean matrices A, B, C define a tripartite
graph, if we consider them as adjacency matrices of its three bipartite con-
nection subgraphs. We will denote this tripartite graph by G = (A, B, ().
Since A, B, C are square n x n matrices, the graph G is equitripartite, with
the size of each partite class equal to n.

A simple undirected graph is called triangle-free if it does not contain a
triangle (a cycle of length three). The graph G is triangle-free existence of
a triangle in G would imply that for some i, j, k, A[i,j] = B[j, k] = C[k,i] =

1, therefore A[i, 5] A B[j, k] = 1, but CJi, k] = C[k,i] =T = 0. Note that the
property of a graph G to be triangle-free is symmetric: matrix C' does not

www.manaraa.com

5.1. FAST BOOLEAN MATRIX MULTIPLICATION 69

play any special role compared to A and B.

The following simple result is not necessary for the derivation of our
algorithm, and is given only to illustrate the connection between Boolean
matrix multiplication and triangle-free graphs. Let us call the factors A and
B maximal, if changing a zero to a one in any position of A or B results
in changing some zeros to ones in the product C' (and therefore some ones
to zeros in C). A triangle-free graph is called maximal if the addition of
any new edge creates a triangle. When we consider tripartite triangle-free
graphs, we call such a graph mazimal if we cannot add any new edge so
that the resulting graph is still tripartite and triangle-free. Note that by
this definition, a maximal tripartite triangle-free graph may not be maximal
as a general triangle-free graph. We have the following lemma.

Lemma 2. Let A, B, C be arbitrary n x n Boolean matrices. The following
statements are equivalent:

(i) A, B are mazimal matrices such that AN B = C;
(ii) ANB=C, BAC =A, CANA=B;
(iii) G = (A, B,C) is a mazimal equitripartite triangle-free graph.
Proof. Straightforward application of the definitions. |

Lemma 2 shows that in the product A A B = C, the matrices A, B,
C are in a certain sense interchangeable: any matrix which is a Boolean
product can also be characterised as a maximal Boolean factor. It also gives
a characterisation of such matrices by maximal triangle-free graphs.

One of the few references to maximal equitripartite triangle-free graphs
appears in [Bol78]. In particular, [Bol78, pages 324 325] states the problem
of finding the minimum possible density of such a graph; it is easy to see
from the discussion above that this problem is closely related to Boolean
matrix multiplication. It is then noted in [Bol78] that, as of the time of
writing, the minimum density problem was “completely unresolved”. Since
then, however, a general approach to problems of this kind has been de-
veloped. The basis of this approach is Szemerédi’s Regularity Lemma (see
e.g. [KS96]). Here we apply this lemma directly to the Boolean matrix mul-
tiplication problem; it might also be applicable to similar extremal graph
problems, including the minimum density problem.

In the definitions and theorems below, we follow [KS96, Die97]. Let
G = (V,E) be a simple undirected graph. Let v(G) = |V|, e(G) = |E|.
For disjoint X, Y C V., let ¢(X,Y) denote the number of edges between
X and Y. We define the density of the bipartite subgraph (X,Y) as
d(X,Y) = e(X,Y)/(|X]| - |Y|). For disjoint A,B C V we call (A, B) an
e-reqular subgraph, if for every X C A, |X| > €|A|, and Y C B, |Y| > ¢|B|,
we have |d(X,Y) —d(A, B)| < e. We say that G has an (e, d)-partitioning of

www.manaraa.com

70 CHAPTER 5. GRAPH COMPUTATION IN BSP

size m, if V' can be partitioned into m disjoint subsets of equal size, called
clusters, such that for any two clusters A, B, the bipartite subgraph (A, B)
is either e-regular with density at least d, or empty. A cluster graph of an
(e, d)-partitioning is a graph with m nodes corresponding to the clusters, in
which two nodes are connected by an edge if and only if the two correspond-
ing clusters form a non-empty bipartite subgraph. If G is an equitripartite
graph, then each cluster is a subset of one of the three parts, and the cluster
graph is also equitripartite.

We will not apply the definition of e-regularity directly. Instead, we will
use the following theorem (in a slightly more general form, paper [KS96]
calls it the Key Lemma; a further generalisation is known as the Blow-Up
Lemma).

Theorem 9 (Komlés, Simonovits). Letd > e > 0. Let G be a graph with
an (e, d)-partitioning, and let R be the cluster graph of this partitioning. Let
H be a subgraph of R with mazimum degree A > 0. If e < (d—€)®/(2+ A),
then G contains a subgraph isomorphic to H.

Proof. See [KS96, Die97]. [

Since we are interested in triangle-free graphs, we take H to be a triangle.
By simplifying the condition on d and e, we obtain the following corollary
of Theorem 9: if d < 4/5, e < d?/4, and G is triangle-free, then its cluster
graph R is also triangle-free.

Our main tool is Szemerédi’s Regularity Lemma. Informally, it states
that any graph can be transformed into a graph with an (e, d)-partitioning
by removing a small number of nodes and edges. Its precise statement,
slightly adapted from [KS96], is as follows.

Theorem 10 (Szemerédi). For every e > 0 there is an M = M/(e) such
that for any d, e < d <1, an arbitrary graph G contains a subgraph Gy with
an (e, d)-partitioning of size at most M, and e(G \ Gy) < (d + €) (7)(G))2.

Proof. See [KS96, Die97]. [|

Note that if e(G) = o(v(G)?), the statement of Theorem 10 becomes
trivial. Also note that for any d > €, an (e, d)-partitioning can be obtained
from an (e, €)-partitioning by simply excluding the e-regular subgraphs with
densities between € and d.

For an equitripartite graph G of size 3n, where n > 22125718, paper
[ADL"94] gives an algorithm which finds the subgraph Gy in sequential time
0(2210‘717 -n“’), where w is the exponent of matrix multiplication (currently
2.376 by [CW90]). The size of the resulting (e, d)-partitioning is at most
M _ 22105717.

We are now able to describe the proposed communication-efficient algo-
rithm for computing AA B = C, where A, B, C are Boolean matrices of size

www.manaraa.com

5.1. FAST BOOLEAN MATRIX MULTIPLICATION 71

n. Let G = (A, B,C). We represent the n? elementary Boolean products as
a cube of volume n? in the three-dimensional index space. The cube G is par-
titioned into p? regular cubic blocks of size n/p. Each block is local to a par-
ticular processor, and corresponds to an equitripartite triangle-free graph'
G = (A,B,C), where A = A[[I,J]], B = B][J, K]] for some 1 < I,J, K < p,
and C = A A B. We shall identify the cubic block with its graph G.

Let us choose positive real numbers € and d, such that ¢ < d?/4 (neces-
sary as a condition of Theorem 9), and d + ¢ < 2/p? (necessary to ensure
that the communication cost H = O(n?/p) after the application of Theo-
rem 10). We take d = 1/p?, € = d?/4 = 1/(4p*). By Theorem 10, we can
find a large subgraph Gy C G with an (e, d)-partitioning of size 3m < M ().
Let Gg = (Ag,Bp,Cp). Also let AG = G\ Gy, and AG = (AA, AB, AC).
We have e(AG) < (d + €)n?/p?. Note that A = AgV AA, B = By V AB,
C=CyVAC and C = AAB = C) v AC, where C; = Ag A By, and
AC' = (AAAB)V (AANAB).

The (e, d)-partitioning of the graph Gy is, up to a permutation of indices,
a partitioning of Gg into m3 regular cubic subblocks. Let us denote a sub-
block of Gy by Gol[i, 7, k]] = (Ao[[%, 5]], Boll7, k], Col[k,4]]), 0 < i,5,k < m.
Let G[[i, 7, k]| and AG[[i, 7, k]] denote similar subblocks of G and AG.

Consider an arbitrary subblock Cy[[k,4]]. If Cy[[k,7]] is a zero matrix,
then C[[k,1]] = AC[[k,i]], and C[[k,i]] = AC[[k,i]]. If Co[[k,4]] is non-zero,
then for any j, 0 < j < m, either Ag[[z, j]] or Bg[[j,k]] is a zero matrix by
Theorem 9. Therefore, Cj[[k,i]] is a zero matrix, and C[[k,]] = AC'[[k, i]].
The two cases (Cy[[k, ¢]] zero or non-zero) can be distinguished by the cluster
graph of Gy alone. The product AAB = C can therefore be found by selecting
each subblock of C from AC or AC' = (AAAB)V (AAAB), where the choice
is governed by the cluster graph. The matrix C_6 = Ay A Bg need not be
computed.

In order to compute the (e, d)-partitioning for all p? blocks of G at the
communication cost H = O(n?/p), blocks must be grouped into p layers of
size n x n x n/p, with p? blocks in each layer. The computation of the two
Boolean matrix products in AC' = (AA A B) V (A A AB) requires that the
same p’ cubic blocks are divided into p similar layers of sizes n/p X n x n
and n X n/p X n, respectively.

The number of nodes in the cluster graph of each block is 0(221057]7) =

O(ZQMPGS). Therefore, each cluster graph contains 0(2245p68) edges. Each

processor computes cluster graphs for p? blocks, therefore the total number

of cluster graph edges computed by a processor is at most 0(22467’68). The

cluster graphs must be exchanged between the processors. To obtain an

algorithm with low communication cost, we require that this number of edges

is at most O(n?/p), therefore it is sufficient to assume that n = 9(2245”68).
The algorithm is as follows.

!"We use the sans-serif font for blocks, in order to reduce the number of subscripts.

www.manaraa.com

72 CHAPTER 5. GRAPH COMPUTATION IN BSP

Algorithm 16. Boolean matriz multiplication.
Parameter: integer n = 9(22457’68).

Input: n x n Boolean matrices A, B.

Output: n x n Boolean matrix C, such that AAB = C.

Description. The algorithm is performed on a CRCW BSPRAM(p, g,1).
The Boolean matrix product A A B = C is represented as a cube of size n
in integer three-dimensional space. This cube is partitioned into p® regular
cubic blocks.

The algorithm proceeds in three stages. We use the notation of Theo-
rem 10 and of the subsequent discussion.

First stage. Matrix C is initialised with zeros. The cube is partitioned into
layers of size n x n x n/p, each containing p? cubic blocks. Every processor
picks a layer, reads the necessary blocks of matrices A, B, and for each
cubic block G computes the graph Gg and the decompositions A = AgV AA,
B =ByVv AB, C = CyV AC. Then for each block G the processor writes
back the matrices AA, AB, AC, and the cluster graph of G.

Second stage. The Boolean products AA A B and A A AB are computed
by partitioning the cube into layers of size n/p x n x n and n x n/p x n,

respectively, each containing p? cubic blocks. Then the Boolean sum AC’ =
(AAAB)V (AAAB) is computed.

Third stage. The blocks of matrix C are partitioned equally among the pro-
cessors. Every processor reads the necessary cluster graphs, and then com-
putes each block C by selecting its subblocks from AC or AC’, as directed
by the cluster graph.

The resulting matrix C is the Boolean matrix product of A and B.

Cost analysis. The local computation, communication and synchronisa-
tion costs are

246p68

W=0(2 -n¥) H=0(®’/p) S=0()

Hence, for any v > w, and n = 9(2246'(7*“’)71'7’68), the local computation
cost is W = O(n?/p), and still H = O(n?/p), S = O(1). Although the
algorithm is essentially non-oblivious, it is communication-oblivious. Its
slackness and granularity are o = n?/p, y = 1. |

Algorithm 16 is asymptotically optimal in communication, since exam-
ining the input already costs H = Q(n?/p). Moreover, its local computation
cost is polynomial in n with exponent w. Therefore, for sufficiently large
n, the algorithm improves on the asymptotic cost of any Strassen-type BSP
algorithm with exponent ¢, w < ¥ < 3. The algorithm is trivially optimal
in synchronisation.

www.manaraa.com

5.2. ALGEBRAIC PATH COMPUTATION 73

5.2 Algebraic path computation

In this section we consider the problem of finding the closure of a square
matrix over a semiring. This problem is also known as the algebraic path
problem. It unifies many seemingly unrelated computational problems, such
as graph connectivity, network reliability, regular language generation, net-
work capacity. All these tasks can be viewed as instances of the algebraic
path problem for an appropriately chosen semiring. More information on
applications of the algebraic path problem can be found in [Car79, Zim81,
GM84a, GM84b, Rot90].

Let an n X n matrix A over a semiring represent a weighted graph with
nodes 1,...,n. The length of an edge i — j is defined as the semiring
element A[i,j]. If the graph is not complete, we assume that non-edges
have length zero. Let A* = I + A+ A? + -+ be the closure of matrix A
(it is not guaranteed to exist in a general semiring). The distance between
nodes i, j is defined as the semiring element A*[7,j]. Note that in this
general setting, the distance does not have to correspond to any particular
“shortest” path in the graph. In the special case where the semiring is the
set of all nonnegative real numbers with oo, and the operations min and +
are used as semiring addition and multiplication respectively, lengths and
distances have their standard graph-theoretic meaning — in particular, oo
plays the role of the zero, and the distances are realised by shortest paths.
We will return to this special case in Section 5.4.

In order to compute the closure of a square matrix over a general semir-
ing, we use Gaussian elimination without pivoting. The method is similar
to the one described in Section 4.5. In the absence of pivoting, Gaussian
elimination over a general semiring is not guaranteed to terminate. Guaran-
teed termination can be achieved by restricting the domain (e.g. considering
closed semirings instead of arbitrary semirings), or by restricting the type
of the matrix, as we did in Section 4.5 for numerical matrices with certain
special properties. In the case of numerical matrices, computation of the
matrix closure corresponds to matrix inversion: A* = (I — A)~!.

Let A be an n xn matrix over a semiring. We assume that the closure of a
semiring element can be computed in time O(1), whenever this closure exists.
Matrix closure A* can be computed by sequential Gaussian elimination in
time ©(n?), provided that the computation terminates. This method is
asymptotically optimal for matrices over a general semiring, which can be
shown by a standard reduction of the matrix multiplication problem.

The BSP matrix closure computation is similar to LU decomposition (see
Section 4.5). The problem can be solved by the cube dag method, giving
BSP cost W = O(n®/p), H = O(n?/p'/?), S = O(p'/?), or by recursive
block Gauss—Jordan elimination. We repeat the description of block Gauss—
Jordan elimination from Section 4.5, making the changes necessary to adapt
it to the algebraic path problem.

www.manaraa.com

74 CHAPTER 5. GRAPH COMPUTATION IN BSP

For convenience we assume that the resulting matrix A* must replace
the original matrix A in the main memory of BSPRAM. The algorithm
works by dividing the matrix into square blocks of size n/2,

A]] A]2>
A= 5.1
<A21 AQQ ()

and then applying block Gauss—Jordan elimination:

12111 < ATI /:122 — 12132
Apg + A1 A Agy + Agn Ay (5.2)
Agy + A9 Ayy Apg + Ap Ay

Agg + Agg + Ag1 A1 Ara Ay A+ Ay Ay Ay

after which every f:l” overwrites A;;. The procedure can be applied recur-
sively to find A}, and A3,. The resulting matrix is

ar = (At At G Ay A6

G* - Ay AY, G*

where G = Ay + A1 A];A12. The computation terminates, if all taken
closures exist.

We now describe the allocation of block closure tasks and block multipli-
cation tasks in (5.2) to the BSPRAM processors. Initially, all p processors
are available to compute the closure A*. There is no substantial parallelism
between block closure and block multiplication tasks in (5.2); we can only
exploit the parallelism within block multiplication. Therefore, the recursion
tree is computed in depth-first order. In each level of recursion, every block
multiplication in (5.2) is performed in parallel by all processors available at
that level. Each block closure in (5.2) is also performed in parallel by all
processors available at that level, if the block size is large enough. When
blocks become sufficiently small, block closure is computed sequentially by
an arbitrarily chosen processor.

The depth at which the algorithm switches from p-processor to single-
processor computation can be varied. This variation allows us to trade off
the costs of communication and synchronisation in a certain range. In order
to account for this tradeoff, we introduce a real parameter «, controlling the
depth of parallel recursion. The algorithm is as follows.

Algorithm 17. Algebraic path computation.
Parameters: integer n > p; real number o, apin = 1/2 < @ < 2/3 = amax.
Input: n x n matrix A over a semiring.

Output: n X n matrix closure A* (assuming it exists), overwriting A.

www.manaraa.com

5.2. ALGEBRAIC PATH COMPUTATION 75

Description. The computation is performed on a CRCW BSPRAM(p, g,1),
and is defined by recursion on the size of the matrix. Denote the matrix size
at the current level of recursion by m. keeping n for the original size. Let
ng = n/p®. Value ng is the threshold, at which the algorithm switches from
parallel to sequential computation.

In each level of recursion, the matrix is divided into regular square blocks
of size m/2 as shown in (5.1). Then, computation (5.2) is performed by the
following schedule.

Small blocks. If 1 < m < ng, choose an arbitrary processor from all currently
available, and compute (5.2) on that processor.

Large blocks. 1f ng < m < n, compute A;; by recursion. Then compute
Ao, Agy, Ao by Algorithm 10. After that, compute Ayy by recursion.
Finally, compute Ay, Aq2, A7 by Algorithm 10. Each of these computations
is performed with all available processors. Overwrite every A;; by /L;j,
obtaining the matrix closure (5.3).

Cost analysis. Recurrence relations, identical to the ones used for Algo-
rithm 12, give the BSP cost

W=0m/p) H=0n/p") S=0(@"

The algorithm is oblivious, with slackness and granularity o = v =
n? /pQ/ 3, [|

Similarly to Algorithm 12, Algorithm 17 with o = amax = 2/3 is better
suited for large values of n, and @ = api, = 1/2 may perform better for a
moderate n.

Lower bounds for the BSP cost of algebraic path computation are also
similar to the bounds given in Section 4.5. In particular, the problem of
computing the n x n matrix product A- B can be reduced to algebraic path
computation by considering the closure of a 3n x 3n lower triangular matrix

*

I I
B I =| B I (5.4)
AT A-B AT

(see e.g. [Pat74, CLRY0]). Therefore, the lower bound H = Q(n?/p*/?) for
standard matrix multiplication (Theorem 7) holds also for matrix closure
over a general semiring.

If the ground semiring is a commutative ring with unit, fast matrix
multiplication can be used instead of standard matrix multiplication for
computing block products. The modified algorithm is as follows.

Parameters: integer n > p*/“; real number o, amin = I/(w—1) <a<
2/w = amax-

www.manaraa.com

76 CHAPTER 5. GRAPH COMPUTATION IN BSP

Input: n x n matrix A over a commutative ring with unit.
Output: n x n matrix closure A* (assuming it exists), overwriting A.

Description. The computation is identical to Algorithm 17, except that
block multiplication is performed by Algorithm 11, rather than Algorithm 10.

Cost analysis. Recurrence relations, identical to the ones used for Algo-
rithm 13, give the BSP cost

W=0(@"/p) H=0(®/p") S=0(@p")

The algorithm is oblivious, with slackness and granularity ¢ = v =
n?/p2" []

If A is a real symmetric positive definite matrix, then the algorithm for
computing the inverse A~! can be obtained by transforming equations (5.2)
into the form

12111 < A;ll ;122 — A;21
12112 — AHA]Q 1‘121 — —A221‘121 (5 5)
12121 — AQV‘L] 1‘112 — _A]ZAZQ

12122 — Agy — AQ]I‘L]A]Q Zn — z‘in + 1‘1211‘:1221‘112

after which every ZZ] overwrites A;;. It is easy to see that matrices A,
Agy are symmetric positive definite, therefore the procedure can be applied
recursively to find Aﬁl and A;QI. The resulting matrix is

At (AT AT AR G Ay A A A G (5.6)

—G71 Ay A Gt ‘
where G = Ayy — A21Aﬁ]A12. Thus, matrix inversion can be performed by
a standard algorithm similar to Algorithms 12, 17, or by a fast algorithm
similar to Algorithms 13, 18.

5.3 Algebraic paths in acyclic graphs

In the previous section we considered the algebraic path problem on an
arbitrary directed graph. It is interesting to analyse the same problem in
the special case where the underlying graph is acyclic.

A directed acyclic graph can be topologically sorted by an all-pairs
shortest paths algorithm with BSP cost W = O(n?/p), H = O(n?/p*/?),
S = O(logp) (see Section 5.4). From now on, we assume that the input
graph is topologically sorted, so that the edges are directed from higher-
indexed to lower-indexed nodes. Such a graph is represented by a lower
triangular matrix.

www.manaraa.com

5.3. ALGEBRAIC PATHS IN ACYCLIC GRAPHS 7

Let A be an n x n lower triangular matrix over a semiring. As before,
we solve the problem of computing the matrix closure A* by recursive block
Gauss Jordan elimination. We assume that the resulting lower triangu-
lar matrix A* must replace the original matrix A in the main memory of
BSPRAM. The algorithm works by dividing the matrix into square blocks
of size n/2,

Ay)
A= 5.7
<A21 Ao (5:7)

and then applying block Gauss—Jordan elimination:

AH — AT]
Agg A,y (5.8)
Agy + Agp Ao Ay

after which every Aij overwrites A;;. The procedure can be applied recur-
sively to find A7, and A3,. The resulting matrix is

(A§2A21AT1 A§2> (5:9)

The computation terminates, if all taken closures exist.

An important difference from the case of arbitrary matrices is that the
block closures A7, and A}, in (5.8) can be computed independently and
simultaneously. In order to exploit this feature, we partition the set of avail-
able processors into two subsets of equal size, each computing one of the
two block closures. This partitioning takes place in every level of recursion,
until p independent tasks are created. The recursion tree is computed in
breadth-first order. Block multiplication in (5.8) is performed in parallel
by all processors available at the current level of recursion. When blocks
become sufficiently small, block closure is computed sequentially by a pro-
cessor chosen arbitrarily from the available processors. The algorithm is as
follows.

Algorithm 19. Algebraic path computation in an acyclic graph.

Parameter: integer n > p2/3.

Input: n x n lower triangular matrix A over a semiring.
Output: n X n matrix closure A* (assuming it exists), overwriting A.

Description. The computation is performed on a CRCW BSPRAM(p, g,1),
and is defined by recursion on the size of the matrix. Denote the matrix
size at the current level of recursion by m, keeping n for the original size.
Let ng = n/p1/3. Value ng is the threshold, at which the algorithm switches
from parallel to sequential computation.

www.manaraa.com

78 CHAPTER 5. GRAPH COMPUTATION IN BSP

In each step of recursion, the matrix is divided into regular square blocks
of size m/2 as shown in (5.7). Then, computation (5.8) is performed by the
following schedule.

Small blocks. If 1 < m < ng, choose an arbitrary processor from the cur-
rently available, and compute (5.8) on this processor.

Large blocks. If ng < m < n, partition the set of currently available proces-
sors into two equal subsets. Compute A;; (respectively, Asy) by recursion,
using the processors of the first (respectively, the second) subset. Then com-
pute Ay; by Algorithm 10, using all processors available at the current level
of recursion. Overwrite every A;; by ;17;3-, obtaining the matrix closure (5.9).

Cost analysis. The values for W = Wy (n), H = Hy(n), S = Sy(n) can be
found from the following recurrence relations:

ng<m<n m = ng
Wy(m) = q/z(m/2) +0(m’/q) O(ny)
Hy(m) = q/z (m/2) + O(m*/¢**) O(ng)
Sq(m) = | Sypa(m/2) + O(1) o(1)

as
W=0@p) H=0(/p"*) S=0(ogp)

The algorithm is oblivious, with slackness and granularity ¢ = v =
n?/p2/3.]

From the analysis of Algorithm 19, the algebraic path problem on an
acyclic graph appears to be asymptotically easier than on a general graph.
The asymptotic communication and local computation costs of Algorithm 19
are the same as for matrix multiplication, and the synchronisation cost is
higher than that of matrix multiplication by only a factor of logp. There
is no communication-synchronisation tradeoff. The proof of a lower bound
on communication cost H = Q(n?/p??) is identical to the proof for general
graphs, given in Section 5.2.

If A is a matrix over a commutative ring with unit, fast matrix multipli-
cation can be used instead of standard matrix multiplication for computing
block products. The modified algorithm is as follows.

Algorithm 20. Fast algebraic path computation in an acyclic graph.
Parameter: integer n > p/¥.

Input: n xn lower triangular matrix A over a commutative ring with unit.
Output: n x n matrix closure A* (assuming it exists), overwriting A.

Description. The computation is identical to Algorithm 19, except that
block multiplication is performed by Algorithm 11, rather than Algorithm 10.

www.manaraa.com

5.4. ALL-PAIRS SHORTEST PATHS COMPUTATION 79

Cost analysis. The values for W = W)(n), H = Hp(n), S = Sp(n) can be
found from the following recurrence relations:

ng<m<n m = ng
Wo(m) = | Wyja(m/2) + O(m®/q) — O(ng)
Hy(m) = | Hypp(m/2) +O(m*/¢* ") O(ng)
Sylm) = | Syalm/2) +0(1) o(1)
as
W=0@m/p) H=0(n*/p* ") §=0(logp)
The algorithm is oblivious, with slackness and granularity o = v =
n2/p2ur1_ m

If A is a real nonsingular lower triangular matrix, then the algorithm for
computing the inverse A~! can be obtained by transforming equations (5.8)
into the form

12111 < A;ll
12122 < A521 (510)
Agy + —Agn A Apy

after which every ;17;3- overwrites A;;. Matrices Aj1, Aoy are nonsingular
lower triangular, therefore the procedure can be be applied recursively to
find Aﬁ] and A;;. The resulting matrix is

A*]
A :(v) (5.11)
*A221A21A111 A221

Thus, triangular matrix inversion can be performed by an algorithm similar
to Algorithms 19 or 20.

5.4 All-pairs shortest paths computation

In Section 5.2 we considered the algebraic path problem over an arbitrary
semiring. Here we deal with a special case where the semiring is the set of
real numbers with oo, and the numerical operations min and + are used as
semiring addition and multiplication respectively. Since the min operation
is idempotent, for all 7, j there is a path from i to j of length A*[i, j]

this is one of the shortest paths from ¢ to j. Most algorithms for matrix
closure in the (min, +) semiring can be extended to compute the shortest
paths between all pairs of nodes, as well as the distances. Therefore, in
this section we use the term all-pairs shortest paths problem as a synonym
for the matrix closure problem in the (min,+) semiring. Symbols + and
-, when applied to path lengths, will always denote the semiring addition

www.manaraa.com

80 CHAPTER 5. GRAPH COMPUTATION IN BSP

and multiplication, i.e. numerical min and +. Initially, we consider the case
where all edge lengths are nonnegative. We then extend our method to
general lengths.

The technique of Gauss—Jordan elimination, considered in Section 5.2,
can be applied to the all-pairs shortest paths problem. In this context,
Gauss Jordan elimination is commonly known as the Floyd Warshall al-
gorithm (see e.g. [CLR90]). Its block recursive version, identical to Algo-
rithm 17, solves the problem with BSP cost W = O(n3/p), H = O(n?/p%),
S = O(p®), for an arbitrary «, 1/2 < a < 2/3.

Alternatively, the problem with nonnegative lengths can be solved by
Digkstra’s algorithm ([Dij59], see also [CLR90]). This greedy algorithm finds
all shortest paths from a fixed source in order of increasing length. The
sequential time complexity of Dijkstra’s algorithm is @(n?). To compute
the shortest paths between all pairs of nodes in parallel, one can apply
Dijkstra’s algorithm independently to each node as a source (this approach is
suggested e.g. in [Joh77, Fos95]). The resulting algorithm has BSP cost W =
O(n3/p), H = O(n?), S = O(1). It thus has a higher communication cost,
but a lower synchronisation cost, than the Floyd-Warshall algorithm. This
tradeoff motivates us to look for an improved BSP algorithm, that would
solve the all-pairs shortest paths problem efficiently both in communication
and synchronisation.

In order to design such an algorithm, we use the principle of path dou-
bling. No shortest path may contain more than n edges, therefore A" = A*.
Matrix A™ can be obtained by repeated squaring in log n matrix multiplica-
tions. Therefore, the local computation cost of computing A™ by repeated
squaring is W = ©((n*logn)/p). A refined version of path doubling was
proposed in [AGM97, Tak98]. When run in parallel, this method allows one
to compute the matrix A” = A* with local computation cost W = O(n?/p).
Compared to the Floyd—Warshall algorithm, the new method does not im-
prove on the synchronisation cost by itself; however, an improvement can
be achieved by combining the new method with Dijkstra’s algorithm.

We assume for simplicity that all edges and paths in the graph have
different lengths, therefore all shortest paths are unique. We use the term
path size for the number of edges in a path. The main idea of the method
is to perform path doubling, keeping track not only of path lengths, but
also of path sizes. We assume that lengths and sizes are kept in a single
data structure, called the path matriz. In such a matrix X, each entry
X[i, 7] is either oo, or corresponds to a simple path from 7 to j. Addition
and multiplication of path matrices are defined in the natural way. For an
integer k, let X (k) denote the matrix of all paths in X of size exactly k. More
precisely, X (k)[z,j] = X[i, j] if path X[i, j] has size k, and X (k)[i,j] = oo
otherwise. Let X (ki,...,ks) = X(k1) +--- + X (k) (remembering that +
denotes numerical min). Note that X(0) = [and X = X(0,...,m) =
I+ X(1)+---4 X(m), where m is the maximum path size in X.

www.manaraa.com

5.4. ALL-PAIRS SHORTEST PATHS COMPUTATION 81

For path matrices X, Y, we write X <Y, if X[i, j] < Y[i, 7] for all i,
(ignoring path sizes). We call an entry X4, j] trivial, if i = j, or X[i, j] = co.
We call X and Y disjoint, if either X[i, j], or Y[i, j] is trivial for all 1, j.

For an integer k, matrix A* contains all shortest paths of size at most
k (and maybe some other paths). Suppose that we have computed A* for
some k, 1 < k < n. Our next goal is to compute all shortest paths of size
at most 3k/2. Decompose the path matrix A¥ into a disjoint semiring sum
AF =T+ AF(1) +-- -+ A¥(k). Consider the matrices A¥(k/2+1),..., A*(E).
The total number of nontrivial entries in all these matrices is at most n?
(since the matrices are disjoint), and the average number of nontrivial entries
per matrix is at most 2n?/k. Therefore, for some I, k/2 < | < k, matrix
A¥(1) contains at most 2n?/k nontrivial entries.

Consider any shortest path of size in the range [+1,...,3k/2. This path
consists of an initial subpath of size [, and a final subpath of size at most
k. Therefore, the matrix product A*(0,1) - A* contains all shortest paths of
size at most 3k/2: A*(0,1) - A¥ < A3%/2. Since A*(0,1) has at most 2n?/k
nontrivial entries, computation of A*(0,1)- A* requires not more than 2n?/k
semiring multiplications.

The above product involves a sparse matrix A¥(0,1), and a dense matrix
A¥. To compute A*(0,1) - A* efficiently in parallel, we need to partition the
problem into p sparse-by-dense matrix multiplication subproblems, where
all the sparse arguments have an approximately equal number of nontrivial

entries. This can be done by first partitioning the set of rows in A¥(0,1)
2n?

£273.p173

nontrivial entries. This partitioning defines, up to a permutation of rows,

a decomposition of the matrix into ;01/3/k1/3 equal horizontal strips. Each

nk1/3
i

into p]/3/k]/3 equal subsets, such that each subset contains at most

strip defines an X n X n sparse-by-dense matrix multiplication sub-
problem.

Consider one of the above subproblems. Partition the set of columns in
the strip into p]/:"/k]/3 equal subsets, such that each subset contains at most
kl%‘;/g nontrivial entries. This partitioning defines, up to a permutation

of columns, a decomposition of the strip into equal square blocks. Each

block defines an ”1;1;23 X ”;f—;;a X n sparse-by-dense matrix multiplication
subproblem. By partitioning the set of columns of the second argument of

this subproblem into p'/3 - k%/3 equal subsets, we obtain p'/3 - k%/3 sparse-
n-k/3 n-k/3 n
YE X 173 X YENSTER

The total number of resulting sparse-by-dense matrix multiplication sub-
problems is p. The sparse argument of each subproblem contains at most
% nontrivial entries. The partitioning can be computed by a greedy
algorithm, the BSP cost of which is negligible. The BSP cost of com-
puting the matrix product A*(0,1) - AF is therefore W = O(n3/(k - p)),
H =0(n?/(kY3 - p¥3)), S = 0(1).

by-dense matrix multiplication subproblems of size

www.manaraa.com

82 CHAPTER 5. GRAPH COMPUTATION IN BSP

The path doubling process stops after at most logs /o p rounds, when the
matrix AP (or some matrix < AP, which is only better) has been computed.
For some ¢, 1 < g < p, matrix AP(q) contains at most n?/p nontrivial en-
tries. Therefore, it can be broadcast to every processor with communication
cost H = O(n?/p). Each processor receives the matrix AP(q), picks n/p
nodes, and computes all shortests paths originating in these nodes by n/p
independent runs of Dijkstra’s algorithm. The result of this computation
across all processors is the matrix closure AP(q)*. Matrix AP(q)* contains
all shortest paths of sizes that are multiples of ¢ (and maybe some other
paths).

Any shortest path in A* consists of an initial subpath of size that is a
multiple of ¢, and a final subpath of size at most ¢ < p. Therefore, all
shortest paths for the original matrix A can be computed as the matrix
product AP(q)* - AP = A*.

The cost of the resulting algorithm is W = O(n?/p), H = O(n?/p?/?),
S = O(log p). We can further reduce the synchronisation cost by terminating
the path doubling phase after fewer than logg /o p steps. For 1 <r < /3 we
can find a g such that the matrix A" (q) has at most n?/r nontrivial entries,
therefore the communication cost of applying Dijkstra’s algorithm to find
A™(q)* is H = O(n?/r).

The resulting algorithm is as follows.

Algorithm 21. All-pairs shortest paths (nonnegative case).

Parameters: integer n > p; integer r, 1 < r < p2/3.

Input: nxn matrix A over the (min, +) semiring of nonnegative real num-
bers with oo.

Output: n x n matrix closure A*.

Description. The computation is performed on a CRCW BSPRAM(p, g,1),
and proceeds in three stages.

First stage. Compute A" and A"(q), 0 < g < r, by at most logg o 7 rounds
of path doubling. Matrix A”(q) contains at most n?/r nontrivial entries.

Second stage. Broadcast A"(q) and compute the closure A"(q)* by n inde-
pendent runs of Dijkstra’s algorithm, n/p runs per processor.

Third stage. Compute the product A" (¢q)* - A" = A*.

Cost analysis. The local computation and communication costs of the
first stage are dominated by the cost of its first round: W = O(n?/p) and
H = O(n?/p*/?). The synchronisation cost of the first stage is S = O(logr).

The cost of the second stage is W = O(n3/p), H = O(n?/r), S = O(1).
The cost of the third stage is W = O(n?/p), H = O(n?/p*/?), S = O(1).

www.manaraa.com

5.4. ALL-PAIRS SHORTEST PATHS COMPUTATION 83

The local computation, communication and synchronisation costs of the
whole algorithm are

W =0@@/p) H=0@mr) §=0(01+logr)

The algorithm is communication-oblivious, with slackness ¢ = n?/r and
granularity v = 1. |

The two extremes of Algorithm 21 are the communication-efficient al-
gorithm with r = p?/3, W = O(n3/p), H = O(n?/p*/?), S = O(logp), and
the multiple Dijkstra algorithm with r = 1, W = O(n3/p), H = O(n?),
S =0(1).

Algorithm 21 allows the following variation. Instead of computing the
closure AP(q)*, represent matrix AP (p) as a product AP(p) = AP(q)-AP(p—q),
0 < ¢ < p/2. For some q, the disjoint sum AP(q)+ AP(p— q) contains at most
2n? /p nontrivial entries. Therefore, the second stage of the algorithm can be
replaced by broadcasting the matrices AP(q) and AP(p— q) (or, equivalently,
their disjoint sum), recovering the product AP(q) - AP(p — q) = AP(p), and
computing the closure AP(p)*. In the third stage, it remains to compute the
product AP(p)* - AP = A*.

We now extend Algorithm 21 to graphs where edge lengths may be neg-
ative. Formally, the problem is defined as finding the closure A* of a matrix
A over the (min, +) semiring of all real numbers with co. The closure is de-
fined, if and only if the graph does not contain a cycle of negative length. We
cannot use our original method to solve this more general problem, because
Dijkstra’s algorithm does not work on graphs with negative edge lengths.
However, we can get round this difficulty by replacing Dijkstra’s algorithm
with an extra stage of sequential path doubling.

The extended algorithm has three stages. In the first stage, we compute
the matrix A?" by 2 logs /o p steps of parallel path doubling. Let AP’ ((p)) =
AV (p,2p, ... p?), and AP ((p) — q) = A”Q(p ~a.2p—q.....p° —q). We
represent matrix AP ((p)) as a product AP ((p)) = AP (q) - AP ((p) — q),
0 < g < p/2. For some ¢, the disjoint sum A”Z(q) + A”Q((p) — q) contains at
most 2n? /p nontrivial entries. In the second stage, we collect matrices AP (q)
and AP’ ((p) — ¢) in a single processor, and recover their product A?”((p)).
Now the closure AP ((p))* = AP’ (p)* can be computed by sequential path
doubling. In the third stage, it remains to compute the product AP’ (p)* -
AP = A%,

In contrast with the nonnegative case, early termination of the parallel
path doubling phase would increase not only the communication cost, but
also the local computation cost. Therefore, we do not consider this option.

The resulting algorithm is as follows.

Algorithm 22. All-pairs shortest paths.

Parameter: integer n > p.

www.manaraa.com

84 CHAPTER 5. GRAPH COMPUTATION IN BSP

Input: n x n matrix A over the (min, +) semiring of real numbers with oc.
Output: n x n matrix closure A*.

Description. The computation is performed on a CRCW BSPRAM(p, g,1),
and proceeds in three stages.

First stage. Compute AP” and APQ(p)) by at most 2logz, p rounds of par-

(
allel path doubling. Represent A?”((p)) as A””((p)) = A" (q) - A”"((p) — q),
0 < ¢ < p/2. The disjoint sum AP’ (q) + A?” ((p) — q) contains at most 2n?/p
nontrivial entries.

Second stage. Collect A”z(q) + AP’ ((p) —q) in a single processor, and recover
AP*((p)) = AP*(q) - AP*((p) — q). Compute the closure AP”((p))* = AP’ (p)*
by sequential path doubling.

Third stage. Compute the product AP’ (p)* - A" = A*,

Cost analysis. The local computation and communication costs of the
first stage are dominated by the cost of its first round: W = O(n?/p) and
H = O(n?/p*/?). The synchronisation cost of the first stage is S = O(log p).

The local computation cost of the second stage is dominated by the
cost of its first round, equal to W = O(n?®/p). The communication and
synchronisation costs of the second stage are H = O(n?/p), S = O(1).

The cost of the third stage is W = O(n*/p), H = O(n?/p*/?), S = O(1).

The local computation, communication and synchronisation costs of the
whole algorithm are

W=0@'/p) H=0®/p"") S=0(ogp)

The algorithm is communication-oblivious, with slackness ¢ = n?/p and
granularity v = 1. |

The described method is applicable not only to the (min,+) semiring,
but also to any semiring where addition is idempotent. The examples are
the (V,A) semiring for the problem of transitive closure, the (max,min)
semiring for paths of maximum capacity, or the (max, -) semiring for paths of
maximum reliability. Note that in the case of transitive closure computation
by Algorithm 21, Boolean matrix multiplication (Algorithm 16) cannot be
used instead of general matrix multiplication (Algorithm 10), since the path
doubling process involves the multiplication of path matrices, rather than
ordinary Boolean matrices. It is not clear if an extension of Algorithm 16
can be obtained for path matrix multiplication.

5.5 Single-source shortest paths computation

In the previous section, we presented deterministic BSP algorithms for find-
ing all-pairs shortest paths in a dense weighted graph. In this section, we

www.manaraa.com

5.5. SINGLE-SOURCE SHORTEST PATHS COMPUTATION 85

deal with the problem of finding all shortest paths from a single distin-
guished node, called the source. The considered graph may be sparse, and
some edge lengths may be negative.

We develop an efficient BSP algorithm for the single-source shortest
paths problem, by using a simple randomisation method proposed in [UY91].
First, we choose a random subset of s < n sample nodes, which also includes
the source node. If s > n® for a constant ¢ > 0, then an arbitrary subset
of nlogn/s nodes contains a sample node with high probability (see e.g.
[UY91]). For every sample node, we then compute all outgoing shortest
paths of size at most nlogn/s. Consider any shortest path beginning at
the source. With high probability, this path is divided by the sample nodes
into shortest subpaths of size at most nlogn/s. These subpaths are among
the shortest paths just computed. Let the sample graph be defined as the
graph on the sample nodes, with edges corresponding to the shortest paths
between the samples. The next step of the algorithm is to compute all-pairs
shortest paths in the sample graph. After that, one matrix multiplication
is sufficient to complete the computation of single-source shortest paths in
the original graph.

We assume that the input is a sparse graph with m edges, n < m < n?.
The high-probability argument requires that m = Q(n'*€) for some constant
e > 0. As before, the graph is weighted and directed, with arbitrary real
edge lengths. We keep using the notation + and -, when applied to edge
lengths, for numerical min and + respectively.

The single-source shortest path problem in a graph corresponds to a
system of linear equations in the (min, +) semiring. The standard Bellman
Ford single-source shortest paths algorithm (see e.g. [CLR90]) can be viewed
as solving this linear system by Jacobi iteration. An iteration step has
sequential cost O(m), and consists in multiplying the system matrix by a
vector. A total of n steps may be required, therefore the sequential cost of
the Bellman—Ford algorithm is O(mn).

The randomised shortest paths algorithm needs to compute shortest
paths from s different sources, up to path size nlogn/s. This corresponds to
nlogmn/s steps of Jacobi iteration, performed independently on s initial vec-
tors. Alternatively, the computation can be viewed as a sequence of nlogn/s
steps, each of which is a multiplication of a sparse n X n matrix by a dense
n x s matrix. The sequential cost of this computation is O(mnlogn).

Let A be the graph matrix. Without loss of generality, we assume that
the source node has index 1. Single-source shortest paths can therefore be
computed by the following simple, synchronisation-efficient randomised BSP
algorithm.

Algorithm 23. Randomised single-source shortest paths in sparse graph.

Parameter: integer n > p.

www.manaraa.com

86 CHAPTER 5. GRAPH COMPUTATION IN BSP

Input: n x n matrix A over the (min, +) semiring of real numbers with oc.
Matrix A contains m = Q(n'T¢) nontrivial entries, for a constant e > 0.

Output: n-vector (0,00,...,00) - A*.

Description. Let s = min(m/n,n'/?). The computation is performed on
a CRCW BSPRAM(p, g,1), and proceeds in three stages.

First stage. Broadcast matrix A. Select s random sample nodes, including
the source node. Without loss of generality, let the sample nodes have
indices 1,...,s. Let J denote an n x s matrix, such that J[i, j] = 0 if i = j,
and J[i,j] = oo otherwise. Compute s x n matrix B = J© . Anlogn/s by
s independent runs of the Bellman Ford algorithm. Compute s x s matrix
C=B-J=J". Anlogn/s . J.

Second stage. Collect matrix C in a single processor, and compute its closure
C* by an efficient sequential algorithm. Let the s-vector ¢ be the first row
of C*: ¢ = (0,00,...,00) - C*.

Third stage. Broadcast ¢, and compute the n-vector ¢ - B. With high prob-
ability, this vector is equal to the first row of A*: ¢- B = (0,00,...,00) - A*.

Cost analysis. The communication cost of broadcast in the first stage is
H = O(m). The local computation cost of the first stage is determined by
the cost of the Bellman Ford algorithm: W = O(mnlogn/p).

The communication cost of collecting the sample matrix C' in the second
stage is H = O(s?). The local computation cost of finding the closure C*
is W = O(s?). Both costs are dominated by the respective costs of the first
stage.

The communication cost of broadcast in the third stage is H = O(s).
The local computation cost of the third stage is W = O(sn/p). Again, both
costs are dominated by the respective costs of the first stage.

The local computation, communication and synchronisation costs of the
whole algorithm are

W = O(mnlogn/p) H = 0(m) S=0(1)

The algorithm is communication-oblivious, with slackness and granularity
o=vy=s/p. [|

The local computation cost of Algorithm 23 differs from the cost of the
sequential Bellman-Ford algorithm by a factor of logn. It is not known
whether the single-source shortest path problem can be solved in parallel
with local computation cost O(mn/p).

The communication cost of Algorithm 23 can be reduced by partitioning
matrix A in the first stage into regular square blocks, and performing the
computation of matrix B in nlogn/s supersteps. We do not consider this
alternative fine-grain algorithm, because of its high synchronisation cost.

www.manaraa.com

5.6. MINIMUM SPANNING TREE COMPUTATION 87

5.6 Minimum spanning tree computation

Finally, we consider the problem of finding the minimum spanning tree
(MST) in a weighted undirected graph. As observed in [MP88], the MST
problem can be viewed as an instance of the algebraic path problem. The
problem input is a symmetric matrix over the semiring of all real numbers
with oo, where the operations min and max are used as semiring addition
and multiplication respectively. Due to the symmetry of the matrix, and
the special structure of the (min, max) semiring, the MST can be found in
sequential time O(n?), in contrast with the ©(n3) complexity of standard
algorithms for the general algebraic path problem.

Standard sequential algorithms for MST computation employ greedy
techniques, such as the algorithms by Kruskal and Prim (see e.g. [Chr75,
AHUS83, CLR90]). These greedy algorithms find the MST of a graph with
n nodes and m edges in time O(mlogn). Many algorithms with a lower
asymptotic complexity have been proposed, but it is not known if an O(m)
deterministic algorithm exists. However, if the input edges are sorted by
weight, the greedy algorithms work in time O(m). Paper [KKT95] describes
a randomised O(m) MST algorithm.

A standard PRAM solution to the problem is provided by another greedy
algorithm, attributed to Boruvka and Sollin (see e.g. [J4J92]). The algorithm
works by selecting for each node the shortest incident edge. The resulting
set of edges is a subforest of the MST. Connected components of this forest
are regarded as nodes of a new graph, where the weight of an edge between
two nodes is defined as the minimum weight of an edge between the two
corresponding components. The procedure is repeated until only one node
is left. The MST of the original graph is the union of the forests constructed
in all rounds. The number of nodes in the graph is reduced by at least a
factor of two in each round, therefore O(logn) rounds are sufficient for a
dense graph. The contraction of tree components in each round can take up
to O(logn) steps, therefore the total PRAM complexity of the algorithm is
O(log®n). Paper [JM95] presents a more efficient PRAM algorithm, with
complexity O(log®? n).

The BSPRAM model suggests an alternative, coarse-grain approach to
the problem. We assume that initially the edges of the graph are stored in
the main memory. We also assume that all edge weights are distinct (oth-
erwise we can break the ties by attaching a unique identifier to each edge).
A useful theorem from [MP88] relates the MST problem to the problem of
finding shortest paths in a graph.

Theorem 11 (Maggs, Plotkin). A path between two nodes in the mini-
mum spanning tree is the lightest path between these nodes, where path weight
is defined as the weight of the heaviest edge in the path.

Proof. See [MP88]. [|

www.manaraa.com

88 CHAPTER 5. GRAPH COMPUTATION IN BSP

To find the MST, consider a partitioning of the m edges into p arbitrary
subsets. Each subset defines a subgraph of the original graph. We compute
the MST of each subgraph separately by an efficient sequential algorithm,
either deterministic or randomised. Any edge that does not belong to one
of the subgraph MSTs does not belong to the MST of the whole graph.
Indeed, such an edge cannot be the lightest path between its ends, since
there is a lighter path in the MST of the subgraph that contains that edge.
Therefore, the MST of the whole graph is contained in the union of subgraph
MSTs, and can be found as the MST of this union. The resulting BSPRAM
algorithm is as follows.

Algorithm 24. Minimum spanning tree.

Parameters: integer n > p? (respectively, n > p? log p); integer m > n - p?
(respectively, m > n-p?logp, m > nlogn) for the randomised (respectively,
deterministic) version of the algorithm.

Input: undirected weighted graph G with n nodes and m edges.
Output: minimum spanning tree of G.

Description. The computation is performed on an EREW BSPRAM(p, g,1).
Edges of G are partitioned across the processors, m/p edges per processor.
After that, the computation is performed in message-passing mode and pro-
ceeds in two stages.

First stage. Kach processor computes the MST of the subgraph of G defined
by the m/p local edges, and then sorts the edges of the obtained local MST.

Second stage. The local MSTs are collected in a single processor. This pro-
cessor merges the received edges into a sorted sequence, and then computes
the MST of their union, obtaining the MST of G.

Cost analysis. The communication cost of the initial distribution is H =
O(m/p). The (expected) local computation cost of computing subgraph
MSTs in the first stage is O(mlogn/p) for the deterministic version, and
O(m/p) for the randomised version. The cost of sorting the edges of the
local MSTs is O(nlogn/p). The size of each local MST is O(n). Therefore,
the communication cost of collecting the local MSTs is O(n - p). The local
computation cost of merging the local MSTs in the second stage is O(n -
plogp). The assumptions on the size of n and m imply that the BSP cost of
the second stage is dominated by the cost of the first stage. Thus, the local
computation cost of the deterministic algorithm is Wy = O(mlogn/p),
and the expected local computation cost of the randomised algorithm is
Wexp = O(m/p). The communication and synchronisation costs of both
algorithms are H = O(m/p), S = O(1). The algorithm is communication-
oblivious. Its slackness and granularity are o =y = m/p. |

www.manaraa.com

5.6. MINIMUM SPANNING TREE COMPUTATION 89

Papers [ADJ198, DGY8] present more complex BSP algorithms, that
are efficient for smaller input sizes. For dense graphs, these algorithms are
similar to Algorithm 24.

www.manharaa.com

Chapter 6

Conclusions

In this thesis we have developed a systematic approach to the design and
analysis of bulk-synchronous parallel algorithms, based on the BSPRAM
model. This model enhances the standard BSP model with shared memory,
while retaining the concept of data locality. It was shown that the BSP
and the BSPRAM models are related by efficient simulation for a broad
range of algorithms. We have identified some characteristic algorithm prop-
erties that enable such simulation: communication-obliviousness, slackness,
granularity. The BSPRAM approach encourages natural specification of the
problems: the input and output data are assumed to be stored in the main
memory, no assumptions on data distribution are necessary. The use of
shared memory simplifies the design and analysis of BSP algorithms.

We have presented BSPRAM algorithms for popular computational prob-
lems from three large domains: combinatorial computation, computation on
dense matrices, and graph computation. The BSP costs of the presented al-
gorithms are summarised in Tables 6.1 6.4 (with constant factors omitted).
It is assumed that the input size is sufficiently large with respect to the
number of processors. Some of the algorithms exhibit a tradeoff between
communication and synchronisation costs. Constant factors involved in the
asymptotic costs of the presented algorithms are fairly small, with the ex-
ception of fast Boolean matrix multiplication, where these factors are astro-

Problem W H S
Complete tree n/p n/p 1
Butterfly dag nlogn/p | n/p 1
Cube dag n?/p n2/pl/2 pl/2
Sorting nlogn/p | n/p 1
List contraction | n/p n/p log p
Tree contraction | n/p n/p logp

Table 6.1: Summary of combinatorial algorithms

90

www.manaraa.com

Problem 7% H S
Matrix-vector multiplication | n?/p | n/p'/? 1
Triangular system solution | n?/p | n P
Matrix multiplication n?/p | n?/p*/3 1
Gaussian elimination n?/p

no pivoting, min H — n2/;02/3 p2/3
no pivoting, min S — n?p'/? p'/?
block pivoting, min H — n? [p?/3 p?/3 - (log p)?
block pivoting, min .S — n?. (]051# p'/% - (log p)3/?
column pivoting — n? P
Table 6.2: Summary of matrix algorithms
Problem w H S
Matrix multiplication | n“/p n?[p?/¥
Gaussian elimination | n*/p
no pivoting, min H | — n? [p?l@ | p?l@
no pivoting, min S | — n?/p/? | p'/?
Boolean matrix mult | n¥/p
normal - n?/p*
min H, any W n“ - exp(p®®) | n?/p
Table 6.3: Summary of fast matrix algorithms
Problem w H S
Algebraic paths n3/p
general, min H — n?/p?/3 | p?/3
general, min S — n?/pt/? | p'/?
acyclic — n?/p*/3 | logp
All-pairs shortest paths n?/p
general — n?/p?/3 | logp
nonnegative, min H — 77,2/])2/3 log p
nonnegative, min § — n? 1
Single-source shortest paths | mnlogn/p
general, randomised — m 1
Minimum spanning tree m/p
randomised - m/p 1
deterministic mlogn/p | m/p 1

Table 6.4: Summary of graph algorithms

91

www.manaraa.com

92 CHAPTER 6. CONCLUSIONS

nomically large. The question remains whether a practical communication-
efficient algorithm for Boolean matrix multiplication exists.

Asymptotic optimality has been proven for some of the presented algo-
rithms. For other algorithms, we have discussed possible methods of obtain-
ing a lower bound. Lower bounds on communication and synchronisation
were treated separately. A possible direction of future research consists in
obtaining lower bounds on communication-synchronisation tradeoffs. Other
research directions include a numerical stability study for the dense matrix
algorithms obtained in Chapter 4, and an extension of these algorithms to
sparse matrices.

Our presentation highlights certain algorithmic concepts that are im-
portant in developing future BSP languages and programming tools. Apart
from communication-synchronisation tradeoffs, these concepts include block-
ing and recursion. Providing their efficient support both on the local and the
inter-processor level is a challenging task for future BSP software develop-
ment. Implementation of the BSPRAM model and experimental evaluation
of the algorithms presented in this thesis would be useful first steps in this
direction.

www.manharaa.com

Chapter 7

Acknowledgements

This work began in 1993, when I was a visiting student at Oxford Uni-
versity Computing Laboratory, funded by the Soros/FCO Scholarship. My
subsequent DPhil studies were supported in part by ESPRIT Basic Research
Project 9072 GEPPCOM — Foundations of General Purpose Parallel Com-
puting. T am grateful to my supervisor Bill McColl for the exciting oppor-
tunity to participate in this project, and for many illuminating discussions.
I thank my examiners Richard Brent and Mike Paterson for their attentive
reading and valuable advice. Further thanks are due to Rob Bisseling, Radu
Calinescu, Alex Gerbessiotis, Ben Juurlink, Jimmie Lawson, Constantinos
Siniolakis, Karina Terekhova, Alex Wagner, as well as the anonymous refer-
ees of my several papers. The thesis was typeset in INTEX 2¢ with packages
AMS-IATEX and PSTricks. Thanks to my Oxford colleagues for the stim-
ulating atmosphere, to my friends for making my life in Oxford full and
enjoyable, to my wife Karina and to all my family for their love, support
and understanding.

93

www.manharaa.com

Appendix A

The Loomis—Whitney
inequality and its
generalisations

The optimality of several BSP matrix algorithms presented in Chapter 4
rests on the discrete Loomis Whitney inequality. The latter is closely related
to Cauchy’s inequality and the classical isoperimetric inequality. In this
appendix we propose a new simple proof and a generalisation of the discrete
Loomis Whitney inequality.

One of the most common inequalities in analysis is the classical Cauchy
inequality (see e.g. [Mit70]): for two finite sequences a;,b; > 0,1 <i < n,

n]/2 1/2 n ‘ 1/2 n ‘ 1/2
> a0 < D a > b (A.1)
=1

i=1 i=1

A standard generalisation of (A.1) for exponents o and 3, a + 8 = 1, is
Holder’s inequality. It can be further generalised by taking m > 2 sequences,
and exponents «aq, ..., q,,, such that oy +--- + a;, = 1.

Another important result is the Loomis Whitney inequality, relating the
volume of a compact set in R™, m > 2, to the areas of its orthogonal
projections onto r-dimensional coordinate subspaces, 1 < r < m. It was
introduced in [LW49] (see also [Had57, BZ88]) to simplify the proof of the
classical isoperimetric “volume-to-surface” inequality. The discrete analog
of the Loomis Whitney inequality relates the size of a finite set of points in
Z™ to the sizes of its orthogonal projections onto r-dimensional coordinate
subspaces.

For simplicity, let us take m = 3, r = 2. Let A be a finite set of points in
Z3, and let Ay, Ay, A3 be the orthogonal projections of A onto the coordinate
planes. The discrete Loomis—Whitney inequality states that

A < A2 4] V2 Ay (A.2)

94

www.manaraa.com

95

where || denotes the cardinality of a finite set.

Inequalities (A.1) and (A.2) seem at first to be unrelated. However,
they are special cases of the following general inequality: for finite sequences
aij, bjk, ik >0, 1 <4,5,k <mn,

n n 1/2 n 1/2 n 1/2
Z a::j/Qb;-l/CQCJ:éQ < <Z ai]-) <Z b]k) <Z Cik) (A3)
[1

ijk=1 ij=1 Gik=1 i k=

The Cauchy inequality (A.1) follows from (A.3) when a;; = a; for all i,
bjr = b; for all k, and c;; = 1 for all i, k. The discrete Loomis—Whitney
inequality (A.2) follows from (A.3) when a;j, bjx, cp; € {0, 1}.

Inequality (A.3) can be rewritten in matrix form as tr(ABC) < ||A] -

IBI|- IC|l, where A = (a}/?), B = (b}1), C = (c;,?), and ||| is the Frobe-

nius (Euclidean) matrix norm: || X| = (ZU x?j)l/2’ where X = (z;;). In
this form, the inequality can be proved straightforwardly from the proper-
ties of the Frobenius norm, and of the Frobenius inner product (X,Y) =
tr(XYT) < [XY] We have tr(ABC) < ||A]-|(BO)T|| < |A]l-|B]|C].

We now consider the multidimensional versions of the above inequalities.
Let m > 3,1 < r < m. For m — 1 sequences asfi] > 0,1 < s <m— 1,
1 <4 <n, and exponents a1 = -+ = a1 = ﬁ, the generalised Holder
inequality is

1

n m—1 m—1 n m—1
I] aslil™ <] <Z as[z']) . (A.4)

i=1 s=1 s=1 \i=1

For a finite set A C Z™, the discrete Loomis—Whitney inequality is

mr— (™)
Al < <oy concsncm [Asrs,] (M) (A.5)

where Ag, 5., 1 < 81 < -+ < s, < m, are the projections of A onto (T)
coordinate subspaces of dimension r.

Inequalities (A.4) and (A.5) are special cases of the following more gen-
eral inequality.

Theorem 12. For any ag, s, [isy,---,0s,] > 0, 1 < 51 < < 8¢ < m,
1§i1,...,im§n,
. . —1(m\~1
S cirninen Tico concs, <m Gsnsylisys oo vis 1™ () <
e
H1§s1 <-<sp<my (Zlgis1 yeonisy <n Qs;...s, [Zsla A ,Zsr]) T (AG)

Inequality (A.3) corresponds to (A.6) with m = 3, 7 = 2, a12[i1, i2] = aj,
ag3[iz, i3] = bjk, ars[i1, i3] = cik-

www.manaraa.com

96APPENDIX A. THE LOOMIS-WHITNEY INEQUALITY AND ITS GENERALISATIONS

Proof. The matrix proof of inequality (A.3) does not seem to generalise to
a proof of (A.6) (although the inequality for tr(ABC) can be extended to
an arbitrary number of matrices). To avoid dealing with the cumbersome
notation of (A.6), we give an alternative, elementary proof of (A.3), that
can be easily generalised to a proof of (A.6).

We apply Cauchy’s inequality (A.1) to the left-hand side of (A.3) three
times. The subexpressions to which Cauchy’s inequality is applied are de-
noted below by square brackets. We have

Sl
ijk

1/2 1/2,1/2 1/2 - 12 ‘ 1/2_
Zcik Za’ij bjk < Zcik Z”‘m Zbak =
ik J ik J J

1/2 " 1/2

> (Sn) [(m)] <
k J i J

;(Z) () " (z o) -
(o) [(5m) " (50)”
(2": Gz‘j) " (%: bjk) " <zn: cik) v

iJ ik

<

A generalisation for arbitrary r and m is straightforward. |

Inequality (A.6) degenerates to an identity when » = 1 or r = m. The
generalised symmetric Holder inequality (A.4) follows from (A.6) when r =
m — 1,

Q1 k1 ko1 Bl - - s Tk 15 T Ts - - o i 1) = Ok[Im—1]

for 1 <k <m—1, and ay._m-2li1,...,im-2] = 1. The discrete Loomis
Whitney inequality (A.5) follows from (A.6) when ag, s, [isy,---,%s,] € {0,1}.

www.manharaa.com

Bibliography

[ABG+95]

[ABK95]

[ACS90]

[ADJ*98]

[ADL*94]

[AGL*98]

[AGMY7]

[AHUT76]

[AHUS83]

R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and
P. Palkar. A three-dimensional approach to parallel matrix

multiplication. IBM Journal of Research and Development,
39(5):575-581, 1995.

M. Adler, J. W. Byers, and R. M. Karp. Parallel sorting with
limited bandwidth. In Proceedings of ACM SPAA 95, pages
129-136, 1995.

A. Aggarwal, A. K. Chandra, and M. Snir. Communication
complexity of PRAMs. Theoretical Computer Science, 71(1):3—
28, March 1990.

M. Adler, W. Dittrich, B. Juurlink, M. Kutylowski, and
I. Rieping. Communication-optimal parallel minimum span-
ning tree algorithms. In Proceedings of the 10th ACM SPAA,
1998.

N. Alon, R. A. Duke, H. Lefmann, V. Rodl, and R. Yuster.
The algorithmic aspects of the regularity lemma. Journal of
Algorithms, 16(1):80 109, January 1994.

G. A. Alverson, W. G. Griswold, C. Lin, D. Notkin, and
L. Snyder. Abstractions for portable, scalable parallel program-
ming. IEEE Transactions on Parallel and Distributed Systems,
9(1):71 86, January 1998.

N. Alon, Z. Galil, and O. Margalit. On the exponent of the all
pairs shortest path problem. Journal of Computer and System
Sciences, 54(2):255-262, April 1997.

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1976.

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures
and Algorithms. Addison-Wesley Series in Computer Science
and Information Processing. Addison-Wesley, 1983.

97

www.manaraa.com

98 BIBLIOGRAPHY

[AM90] R. J. Anderson and G. L. Miller. A simple randomized paral-
lel algorithm for list ranking. Information Processing Letters,
33(5):269 273, January 1990.

[BCS97] P. Biirgisser, M. Clausen, and M. A. Shokrollahi. Algebraic
Complexity Theory. Number 315 in Grundlehren der mathe-
matischen Wissenschaften. Springer, 1997.

[Ber85] C. Berge. Graphs, volume 6, part 1 of North-Holland Mathe-
matical Library. North-Holland, second revised edition, 1985.

[BH74] J. R. Bunch and J. E. Hopcroft. Triangular factorization and
inversion by fast matrix multiplication. Mathematics of Com-
putation, 21(125):231-236, January 1974.

[BK82] R. P. Brent and H. T. Kung. A regular layout for paral-
lel adders. IEEE Transactions on Computers, 31(3):260 264,
March 1982.

[BKM95] J. Basch, S. Khanna, and R. Motwani. On diameter verifi-
cation and Boolean matrix multiplication. Technical Report
STAN-CS-95-1544, Department of Computer Science, Stanford
University, 1995.

[Ble93] G. E. Blelloch. Prefix sums and their applications. In J. H.
Reif, editor, Synthesis of Parallel Algorithms, chapter 1, pages
35 60. Morgan Kaufmann, 1993.

[BM93] R. H. Bisseling and W. F. McColl. Scientific computing on bulk
synchronous parallel architectures. Preprint 836, Department
of Mathematics, University of Utrecht, December 1993.

[Bol78] B. Bollobds. Extremal Graph Theory. Academic Press, 1978.

[Bre91] R. P. Brent. Parallel algorithms in linear algebra. In Proceedings
of the Second NEC Research Symposium, August 1991.

[BZ88] Yu. D. Burago and V. A. Zalgaller. Geometric Inequali-
ties. Number 285 in Grundlehren der mathematischen Wis-
senschaften. Springer-Verlag, 1988.

[CarT79] B. Carré. Graphs and Networks. Oxford Applied Mathematics
and Computer Science Series. Clarendon Press, 1979.

[CDO196] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. W. Walker,
and R. Clint Whaley. The design and implementation of the
ScaLAPACK LU, QR and Cholesky factorization routines. Sci-
entific Programming, 5:173-184, 1996.

www.manaraa.com

BIBLIOGRAPHY 99

[Chr75]

[CLR90]

[Col93]

[CV86]

[CWO0]

[DGYS]

[DHS95]

[Die97]

[Dij59)

[Fos95]

[GHSJ96]

[Gib93]

[GM84a]

N. Christofides. Graph theory: an algorithmic approach. Com-
puter science and applied mathematics. Academic Press, 1975.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to Algorithms. The MIT Electrical Engineering and Computer
Science Series. The MIT Press and McGraw—Hill, 1990.

R. Cole. Parallel merge sort. In J. H. Reif, editor, Synthe-
sis of Parallel Algorithms, chapter 10, pages 453 495. Morgan
Kaufmann, 1993.

R. Cole and U. Vishkin. Deterministic coin tossing with appli-
cation to optimal parallel list ranking. Information and Control,
70(1):32-53, July 1986.

D. Coppersmith and S. Winograd. Matrix multiplication via
arithmetic progressions. Journal of Symbolic Computation,
9(3):251-280, March 1990.

F. Dehne and S. Gotz. Practical parallel algorithms for mini-
mum spanning trees. In Proceedings of the Workshop on Ad-
vances in Parallel and Distributed Systems, 1998.

J. W. Demmel, N. J. Higham, and R. S. Schreiber. Block LU
factorization. Numerical Linear Algebra with Applications, 2(2),
1995.

R. Diestel. Graph Theory. Number 173 in Graduate Texts in
Mathematics. Springer, 1997.

E. W. Dijkstra. A note on two problems in connection with
graphs. Numerische Mathematik, 1:269-271, 1959.

1. Foster. Designing and Building Parallel Programs. Addison—
Wesley, 1995.

S. K. S. Gupta, C.-H. Huang, P. Sadayappan, and R. W. John-
son. A framework for generating distributed-memory parallel
programs for block recursive algorithms. Journal of Parallel
and Distributed Computing, 34(2):137-153, May 1996.

P. B. Gibbons. Asynchronous PRAM algorithms. In J. H. Reif,
editor, Synthesis of Parallel Algorithms, chapter 22, pages 957
997. Morgan Kaufmann, 1993.

M. Gondran and M. Minoux. Graphs and Algorithms. Wiley—
Interscience Series in Discrete Mathematics. John Wiley &
Sons, 1984.

www.manaraa.com

100 BIBLIOGRAPHY

[GM84b] M. Gondran and M. Minoux. Linear algebra in dioids: A survey
of recent results. Annals of Discrete Mathematics, 19:147-164,
1984.

[GMR] P. Gibbons, Y. Matias, and V. Ramachandran. Can a shared
memory model serve as a bridging model for parallel computa-
tion? Theory of Computing Systems. To appear.

[GMRY99] P. Gibbons, Y. Matias, and V. Ramachandran. The QRQW
PRAM: Accounting for contention in parallel algorithms. STAM
Journal on Computing, 28(2):733-769, April 1999.

[GMT88] H. Gazit, G. L. Miller, and Shang-Hua Teng. Optimal tree
contraction in an EREW model. In S. K. Tewksbury, B. W.
Dickinson, and S. C. Schwartz, editors, Concurrent Computa-
tions: Algorithms, Architecture and Technology, pages 139-156,
1988.

[G0096] M. Goodrich. Communication-efficient parallel sorting. In Pro-
ceedings of the 28th ACM STOC, 1996.

[GPS90] K. A. Gallivan, R. J. Plemmons, and A. H. Sameh. Parallel al-
gorithms for dense linear algebra computations. SIAM Review,
32(1):54-135, March 1990.

[GR88] A. Gibbons and W. Rytter. Efficient Parallel Algorithms. Cam-
bridge University Press, 1988.

[GS96] A. V. Gerbessiotis and C. J. Siniolakis. Deterministic sorting
and randomized median finding on the BSP model. In Proceed-
ings of the 8th ACM SPAA, pages 223 232, 1996.

[GvdGY6] B. Grayson and R. A. van de Geijn. A high performance parallel
Strassen implementation. Parallel Processing Letters, 6(1):3
12, 1996.

[Hadb7] H. Hadwiger. Vorlesungen tiber Inhalt, Oberfliche und
Isoperimetrie. Number 93 in Grundlehren der mathematischen
Wissenschaften. Springer-Verlag, 1957.

[HJB] D. R. Helman, J. JiJ4, and D. A. Bader. A new determinis-
tic parallel sorting algorithm with an experimental evaluation.
Journal of Experimental Algorithmics. To appear.

[HKT71] J. E. Hopcroft and L. R. Kerr. On minimizing the number
of multiplications necessary for matrix multiplication. SIAM
Journal of Applied Mathematics, 20(1):30-36, January 1971.

www.manaraa.com

BIBLIOGRAPHY 101

[J4J92]

[JKS93]

[TMY5]

[Joh77]

[KHSJ95]

[KKT95]

[KRYO]

[KRS90]

[KS96]

[LDYO]

[LDY4]

[LLS193]

J. JAJa. An Introduction to Parallel Algorithms. Addison
Wesley, 1992.

H. Jung, L. M. Kirousis, and P. Spirakis. Lower bounds and
efficient algorithms for multiprocessor scheduling of directed
acyclic graphs with communication delays. Information and
Computation, 105(1):94 104, July 1993.

D. B. Johnson and P. Metaxas. A parallel algorithm for comput-
ing minimum spanning trees. Journal of Algorithms, 19(3):383
401, November 1995.

D. B. Johnson. Efficient algorithms for shortest paths in sparse
networks. Journal of the ACM, 24(1):1-13, January 1977.

B. Kumar, C.-H. Huang, P. Sadayappan, and R. W. Johnson.
A tensor product formulation of Strassen’s matrix multiplica-
tion algorithm with memory reduction. Scientific Programming,
4(4):275 289, 1995.

D. R. Karger, P. H. Klein, and R. E. Tarjan. A randomized
linear-time algorithm to find minimum spanning trees. Journal
of the ACM, 42(2):321-328, March 1995.

R. M. Karp and V. Ramachandran. Parallel algorithms for
shared memory machines. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, chapter 17, pages 869-941.
Elsevier, 1990.

C. P. Kruskal, L.. Rudolph, and M. Snir. A complexity theory
of efficient parallel algorithms. Theoretical Computer Science,
71(1):95-132, March 1990.

J. Komlés and M. Simonovits. Szemerédi’s Regularity Lemma
and its applications in graph theory. Technical Report 96-10,
DIMACS, 1996.

S. Lakshmivarahan and S. K. Dhall. Analysis and design of
parallel algorithms: Arithmetic and matriz problems. McGraw-

Hill series in supercomputing and parallel processing. McGraw-
Hill, 1990.

S. Lakshmivarahan and S. K. Dhall. Parallel computing using
the prefiz problem. Oxford University Press, 1994.

X. Li, P. Lu, J. Schaeffer, J. Shillington, P. S. Wong, and H. Shi.
On the versatility of parallel sorting by regular sampling. Par-
allel Computing, 19:1079-1103, October 1993.

www.manaraa.com

102 BIBLIOGRAPHY

[LMS8S] C. E. Leiserson and B. M. Maggs. Communication-efficient par-
allel algorithms for distributed random-access machines. Algo-
rithmica, 3:53 77, 1988.

[LMRY6] Zhiyong Li, P. H. Mills, and J. H. Reif. Models and resource
metrics for parallel and distributed computation. Parallel Al-
gorithms and Applications, 8:35 59, 1996.

[LW49] L. H. Loomis and H. Whitney. An inequality related to the
isoperimetric inequality. Bulletin of the AMS, 55:961-962, 1949.

[McC93] W. F. McColl. General purpose parallel computing. In A. Gib-
bons and P. Spirakis, editors, Lectures on parallel computation,
volume 4 of Cambridge International Series on Parallel Compu-
tation, chapter 14, pages 337-391. Cambridge University Press,
1993.

[McC95] W. F. McColl. Scalable computing. In J. van Leeuwen, editor,
Computer Science Today: Recent Trends and Developments,

volume 1000 of Lecture Notes in Computer Science, pages 46
61. Springer-Verlag, 1995.

[McC96a] W. F. McColl. Private communication, 1996.

[McC96b] W. F. McColl. A BSP realisation of Strassen’s algorithm. In
M. Kara, J. R. Davy, D. Goodeve, and J. Nash, editors, Abstract

Machine Models for Parallel and Distributed Computing, pages
43-46. 10S Press, 1996.

[McC96c] W. F. McColl. Universal computing. In L. Bougé et al., editors,
Proceedings of Euro-Par 96 (1), volume 1123 of Lecture Notes
in Computer Science, pages 25-36. Springer-Verlag, 1996.

[McC98] W. F. McColl. Foundations of time-critical scalable computing.
In Proceedings of the 15th IFIP World Computer Congress. Os-
terreichische Computer Gesellschaft, 1998.

[Mit70] D. S. Mitrinovié. Analytic Inequalities. Number 165 in
Grundlehren der mathematischen Wissenschaften. Springer-
Verlag, 1970.

[MMT95] B. M. Maggs, L. R. Matheson, and R. E. Tarjan. Models of
parallel computation: a survey and synthesis. In Proceedings of
the 28th Hawaii International Conference on System Sciences,
volume 2, pages 61-70. IEEE Press, 1995.

[Mod88] J. J. Modi. Parallel Algorithms and Matriz Computation. Ox-
ford applied mathematics and computing science series. Claren-
don Press, 1988.

www.manaraa.com

BIBLIOGRAPHY 103

[MPS8S]

[MRS?5]

[MT]

[Ort88]

[Pat74]

[Pat93]
[PUST]

[PY90]

[Ram99)]

[RMY6]

[RMMM?93]

[Rot90]

[Sch73]

B. M. Maggs and S. A. Plotkin. Minimum-cost spanning tree
as a path-finding problem. Information Processing Letters,
26(6):291 293, January 1988.

G. L. Miller and J. F. Reif. Parallel tree contraction and its
applications. In Proceedings of the 26th IEEE FOCS, pages
478 489, 1985.

W. F. McColl and A. Tiskin. Memory-efficient matrix multi-
plication in the BSP model. Algorithmica. To appear.

J. M. Ortega. Introduction to Parallel and Vector Solution of
Linear Systems. Frontiers of Computer Science. Plenum Press,
1988.

M. S. Paterson. Complexity of product and closure algorithms
for matrices. In Proceedings of the 2nd International Congress
of Mathematicians, pages 483-489, 1974.

M. S. Paterson. Private communication, 1993.

C. H. Papadimitriou and J. D. Ullman. A communication-time
tradeoff. SIAM Journal of Computing, 16(4):639 646, August
1987.

C. H. Papadimitriou and M. Yannakakis. Towards an
architecture-independent analysis of parallel algorithms. STAM
Journal of Computing, 19(2):322-328, April 1990.

V. Ramachandran. A general purpose shared-memory model
for parallel computation. In M. T. Heath, A. Ranade, and
R. S. Schreiber, editors, Algorithms for Parallel Processing, vol-
ume 105 of IMA Volumes in Mathematics and Applications.
Springer-Verlag, 1999.

M. Reid-Miller. List ranking and list scan on the Cray C
90. Journal of Computer and System Sciences, 53(3):344-356,
December 1996.

M. Reid-Miller, G. L. Miller, and F. Modugno. List ranking and
parallel tree contraction. In J. H. Reif, editor, Synthesis of Par-
allel Algorithms, chapter 3, pages 115-194. Morgan Kaufmann,
1993.

G. Rote. Path problems in graphs. Computing Supplementum,
7:155—-189, 1990.

A. Schonhage. Unitare Transformationen grofier Matrizen. Nu-
merische Mathematik, 20:409-417, 1973.

www.manaraa.com

104 BIBLIOGRAPHY

[Sib97] J. F. Sibeyn. Better trade-offs for parallel list ranking. In
Proceedings of 9th ACM SPAA, pages 221-230, 1997.

[Sny98] L. Snyder. A ZPL programming guide (version 6.2). Technical
report, University of Washington, January 1998.

[SS92] H. Shi and J. Schaeffer. Parallel sorting by regular sampling.
Journal of Parallel and Distributed Computing, 14(4):361-372,
1992.

[ST98] D. B. Skillicorn and D. Talia. Models and languages for parallel
computation. ACM Computing Surveys, 30(2):123-169, June
1998.

[Str69] V. Strassen. Gaussian elimination is not optimal. Numerische

Mathematik, 13:354-356, 1969.

[Tak98] T. Takaoka. Subcubic cost algorithms for the all pairs shortest
path problem. Algorithmica, 20:309 318, 1998.

[TB95] A. Tridgell and R. P. Brent. A general-purpose parallel sort-
ing algorithm. International Journal of High-Speed Computing,
7(2):285 301, 1995.

[Tis96] A. Tiskin. The bulk-synchronous parallel random access ma-
chine. In L. Bougé, P. Fraigniaud, A. Mignotte, and Y. Robert,
editors, Proceedings of Euro-Par 96 (II), volume 1124 of Lec-
ture Notes in Computer Science, pages 327-338. Springer-
Verlag, 1996.

[Tis98] A. Tiskin. The bulk-synchronous parallel random access ma-
chine. Theoretical Computer Science, 196(1-2):109-130, April
1998.

[Tol97] S. Toledo. Locality of reference in LU decomposition with par-

tial pivoting. SIAM Journal of Matriz Analysis and Applica-
tions, 18(4):1065 1081, 1997.

[UY91] J. D. Ullman and M. Yannakakis. High-probability parallel
transitive closure algorithms. SIAM Journal on Computing,
20(1):100 125, February 1991.

[Valg9] L. G. Valiant. Bulk-synchronous parallel computers. In
M. Reeve, editor, Parallel Processing and Artificial Intelligence,
chapter 2, pages 15 22. John Wiley & Sons, 1989.

[Val90a] L. G. Valiant. A bridging model for parallel computation. Com-
munications of the ACM, 33(8):103—-111, August 1990.

www.manaraa.com

BIBLIOGRAPHY 105

[Val90b]

[Zim81]

L. G. Valiant. General purpose parallel architectures. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science,
chapter 18, pages 943 971. Elsevier, 1990.

U. Zimmermann. Linear and Combinatorial Optimization in
Ordered Algebraic Structures, volume 10 of Annals of Discrete
Mathematics. North-Holland, 1981.

www.manharaa.com

